Learn More
BACKGROUND AND PURPOSE Hemodynamics is an important factor in the development and rupture of cerebral aneurysms. Current techniques for measuring blood flow in cerebral aneurysms suffer from various limitations and have not been able to address our clinical needs. A new technique has been developed for effective evaluation of intra-aneurysmal flow based on(More)
BACKGROUND AND PURPOSE Hemodynamics is often recognized as one of the major factors in aneurysm rupture. Flow impingement, greater pressure, and abnormal wall shear stress are all indications for aneurysm rupture. Characterizing wall shear stress for intracranial aneurysms at similar anatomic locations may help in understanding its role. MATERIALS AND(More)
OBJECTIVE The goal of this study was to use phase-contrast magnetic resonance imaging and computational fluid dynamics to estimate the hemodynamic outcome that might result from different interventional options for treating a patient with a giant fusiform aneurysm. METHODS We followed a group of patients with giant intracranial aneurysms who have no clear(More)
BACKGROUND AND PURPOSE The options for treating giant fusiform basilar aneurysms are limited, and the potential impact of planned interventions is difficult to assess. We developed a computational framework to evaluate the impact that interventions might have on hemodynamic conditions. METHODS A computational fluid dynamics approach was used to determine(More)
BACKGROUND AND PURPOSE Hemodynamics may predispose aneurysms to rupture; however, hemodynamic descriptors that can describe aneurysm growth are not well understood. We examined the relationship between hemodynamics and growth of 2 fusiform basilar artery aneurysms in an effort to define hemodynamic variables that may be helpful in predicting aneurysmal(More)
The signal intensity in magnetic resonance angiography (MRA) images reflects both morphological and flow-related features of vascular anatomy. A thorough understanding of MRA, therefore, demands a careful analysis of flow-related effects. Computational fluid dynamics (CFD) methods are very powerful in determining flow patterns in 3D tortuous vessels for(More)
Flow impingement is regarded as a key factor for aneurysm formation and rupture. Wall shear stress (WSS) is often used to evaluate flow impingement even though WSS and impinging force are in two different directions; therefore, this raises an important question of whether using WSS for evaluation of flow impingement size is appropriate. Flow impinging(More)
3D digital subtraction angiography (DSA) allows clinicians to review intracranial aneurysms and other vascular lesions. We report 2 basilar aneurysms that were imaged by both 3D DSA and DynaCT. These 2 techniques produced very different aneurysm appearances. Anterior portions of the aneurysms were invisible on 3D DSA but were revealed by DynaCT. These(More)
A novel computer simulation technique is presented that allows the calculation of images from Magnetic Resonance Angiography (MRA) studies of blood flow in realistic curving and branching two-dimensional vessel geometries. Fluid dynamic calculations provide flow streamlines through curved or branching vessels. MR simulations generate images for specific MR(More)
OBJECTIVE Coexistence of both an intracranial aneurysm and a stenosis at the same internal carotid artery is infrequent, but it may complicate therapeutic management of either disease. It is unclear if a stenosis plays any role in development of intracranial aneurysms. We study patients with intracranial aneurysms at our hospital and investigate if there is(More)