Liang-Chieh Chen

Learn More
Deep Convolutional Neural Networks (DCNNs) have recently shown state of the art performance in high level vision tasks, such as image classification and object detection. This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification (also called ”semantic image segmentation”). We show(More)
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly(More)
Deep convolutional neural networks (DCNNs) trained on a large number of images with strong pixel-level annotations have recently significantly pushed the state-of-art in semantic image segmentation. We study the more challenging problem of learning DCNNs for semantic image segmentation from either (1) weakly annotated training data such as bounding boxes or(More)
Incorporating multi-scale features in fully convolutional neural networks (FCNs) has been a key element to achieving state-of-the-art performance on semantic image segmentation. One common way to extract multi-scale features is to feed multiple resized input images to a shared deep network and then merge the resulting features for pixelwise classification.(More)
Deep convolutional neural networks (CNNs) are the backbone of state-of-art semantic image segmentation systems. Recent work has shown that complementing CNNs with fully-connected conditional random fields (CRFs) can significantly enhance their object localization accuracy, yet dense CRF inference is computationally expensive. We propose replacing the(More)
Many problems in real-world applications involve predicting several random variables that are statistically related. Markov random fields (MRFs) are a great mathematical tool to encode such dependencies. The goal of this paper is to combine MRFs with deep learning to estimate complex representations while taking into account the dependencies between the(More)
We propose a novel attention based deep learning architecture for visual question answering task (VQA). Given an image and an image-related question, VQA returns a natural language answer. Since different questions inquire about the attributes of different image regions, generating correct answers requires the model to have questionguided attention, i.e.,(More)
Parsing human regions into semantic parts, e.g., body, head and arms etc., from a random natural image is challenging while fundamental for computer vision and widely applicable in industry. One major difficulty to handle such a problem is the high flexibility of scale and location of a human instance and its corresponding parts, making the parsing task(More)
In this work, we revisit atrous convolution, a powerful tool to explicitly adjust filter’s field-of-view as well as control the resolution of feature responses computed by Deep Convolutional Neural Networks, in the application of semantic image segmentation. To handle the problem of segmenting objects at multiple scales, we design modules which employ(More)