Learn More
Mycobacterium tuberculosis contains five resuscitation-promoting factor (Rpf)-like proteins, RpfA-E, that are implicated in resuscitation of this organism from dormancy via a mechanism involving hydrolysis of the peptidoglycan by Rpfs and partnering proteins. In this study, the rpfA-E genes were shown to be collectively dispensable for growth of M.(More)
To understand how virulent mycobacteria subvert host immunity and establish disease, we examined the differential response of mice to infection with various human outbreak Mycobacterium tuberculosis clinical isolates. One clinical isolate, HN878, was found to be hypervirulent, as demonstrated by unusually early death of infected immune-competent mice,(More)
The role of type I interferons (IFNs) in the host response to bacterial infections is controversial. Here, we examined the role of IFN-alpha/beta in the murine response to infection with Mycobacterium tuberculosis, using wildtype mice, mice with impaired signaling through the type I IFN receptor (IFNAR), and mice treated to reduce levels of type I IFNs. In(More)
The progression of human tuberculosis (TB) to active disease and transmission involves the development of a caseous granuloma that cavitates and releases infectious Mycobacterium tuberculosis bacilli. In the current study, we exploited genome-wide microarray analysis to determine that genes for lipid sequestration and metabolism were highly expressed in(More)
Mycobacterium tuberculosis, the causative agent of tuberculosis, possesses a class Ib ribonucleotide reductase (RNR), encoded by the nrdE and nrdF2 genes, in addition to a putative class II RNR, encoded by nrdZ. In this study we probed the relative contributions of these RNRs to the growth and persistence of M. tuberculosis. We found that targeted knockout(More)
Infection with Mycobacterium tuberculosis in humans results in active disease in approximately 10% of immune-competent individuals, with the most-severe clinical manifestations observed when the bacilli infect the central nervous system (CNS). Here, we use a rabbit model of tuberculous meningitis to evaluate the severity of disease caused by the M.(More)
The global burden of tuberculosis (TB) morbidity and mortality remains immense. A potential new approach to TB therapy is to augment protective host immune responses. We report that the antidiabetic drug metformin (MET) reduces the intracellular growth of Mycobacterium tuberculosis (Mtb) in an AMPK (adenosine monophosphate-activated protein(More)
Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4(More)
The formation and maintenance of granulomas is central to the host response to Mycobacterium tuberculosis (Mtb) infection. It is widely accepted that the lungs of patients with tuberculosis (TB) usually contain multiple infection foci, and that the granulomas evolve and differentiate independently, resulting in considerable heterogeneity. Although gene(More)
Mycobacterium tuberculosis CDC1551, a clinical isolate reported to be hypervirulent and to grow faster than other isolates, was compared with two other clinical isolates (HN60 and HN878) and two laboratory strains (H37Rv and Erdman). The initial (1-14 days) growth of CDC1551, HN60, HN878, and H37Rv was similar in the lungs of aerosol-infected mice, but(More)