Learn More
The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the(More)
Information in a Spiking Neural Network (SNN) is encoded as the relative timing between spikes. Distortion in spike timings can impact the accuracy of SNN operation by modifying the precise firing time of neurons within the SNN. Maintaining the integrity of spike timings is crucial for reliable operation of SNN applications. A packet switched Network on(More)
This paper presents a synaptic weight association training (SWAT) algorithm for spiking neural networks (SNNs). SWAT merges the Bienenstock-Cooper-Munro (BCM) learning rule with spike timing dependent plasticity (STDP). The STDP/BCM rule yields a unimodal weight distribution where the height of the plasticity window associated with STDP is modulated causing(More)
This paper highlights and discusses the current challenges in the implementation of large scale Spiking Neural Networks (SNNs) in hardware. A mixed-mode approach to realising scalable SNNs on a reconfigurable hardware platform is presented. The approach uses compact low power analogue spiking neuron cells, with a weight storage capability, interconnected(More)
In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper(More)
This paper proposes a supervised training algorithm for Spiking Neural Networks (SNNs) which modifies the Spike Timing Dependent Plasticity (STDP)learning rule to support both local and network level training with multiple synaptic connections and axonal delays. The training algorithm applies the rule to two and three layer SNNs, and is benchmarked using(More)
Recommended by Michael Huebner FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs) applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures(More)