Learn More
This paper presents a synaptic weight association training (SWAT) algorithm for spiking neural networks (SNNs). SWAT merges the Bienenstock-Cooper-Munro (BCM) learning rule with spike timing dependent plasticity (STDP). The STDP/BCM rule yields a unimodal weight distribution where the height of the plasticity window associated with STDP is modulated causing(More)
Spiking neural networks (SNNs) attempt to emulate information processing in the mammalian brain based on massively parallel arrays of neurons that communicate via spike events. SNNs offer the possibility to implement embedded neuromorphic circuits, with high parallelism and low power consumption compared to the traditional von Neumann computer paradigms.(More)
FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs) applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels(More)
The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the(More)
We present a programmable dynamic charge transfer synapse (CTS) in a single semiconductor device. The CTS comprises a metal oxide semiconductor (MOS) transistor operating in subthreshold and two MOS capacitors in proximity to the transistor. One of the capacitors is permanently biased in strong inversion where the associated density of charge in the well(More)
In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper(More)
It has been shown that brain-like self-repair can arise from the interactions between neurons and astrocytes where endocannabinoids are synthesized and released from active neurons. This retrograde messenger feeds back to local synapses directly and indirectly to distant synapses via astrocytes. This direct/indirect feedback of the endocannabinoid(More)
FPGA devices have witnessed popularity in their use for the rapid prototyping of biological Spiking Neural Network (SNNs) applications, as they offer the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biological neuron/synaptic models. Also their routing structures cannot accommodate the high levels of neuron(More)