Learn More
Species' responses to environmental changes such as global warming are affected not only by trends in mean conditions, but also by natural and human-induced environmental fluctuations. Methods are needed to predict how such environmental variation affects ecological and evolutionary processes, in order to design effective strategies to conserve biodiversity(More)
Extreme climatic events (ECEs) are predicted to become more frequent as the climate changes. A rapidly increasing number of studies - though few on animals - suggest that the biological consequences of ECEs can be severe. However, ecological research on the impacts of ECEs has been limited by a lack of cohesiveness and structure. ECEs are often poorly(More)
Natural populations might exhibit resilience to changing climatic conditions if they already show adaptive flexibility in their reproductive strategies. In cooperative breeders, theory predicts that mothers with helpers should provide less care when environmental conditions are favourable, but maintain high investment when conditions are challenging. Here,(More)
Extreme climatic events (ECEs) have a disproportionate effect on ecosystems. Yet much of what we know about the ecological impact of ECEs is based on observing the effects of single extreme events. We examined what characteristics affect the strength of inference that can be drawn from single-event studies, which broadly fell into three categories:(More)
Phenotypic plasticity is a crucial mechanism for responding to changes in climatic means, yet we know little about its role in responding to extreme climatic events (ECEs). ECEs may lack the reliable cues necessary for phenotypic plasticity to evolve; however, this has not been empirically tested. We investigated whether behavioural plasticity in nest-site(More)
  • 1