Learn More
The emerging evidence that stem cells develop in specialised niches highlights the potential role of environmental factors in their regulation. Here we examine the role of beta1 integrin/extracellular matrix interactions in neural stem cells. We find high levels of beta1 integrin expression in the stem-cell containing regions of the embryonic CNS, with(More)
T cells develop in the thymus and are critical for adaptive immunity. Natural killer (NK) lymphocytes constitute an essential component of the innate immune system in tumor surveillance, reproduction, and defense against microbes and viruses. Here, we show that the transcription factor Bcl11b was expressed in all T cell compartments and was indispensable(More)
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expressing four transcription factors: Oct4, Sox2, Klf4, and c-Myc. Here we report that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming, but inhibiting it using a RAR-α dominant-negative form completely blocked it.(More)
Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency(More)
Neural Stem Cells (NSC) are present in the developing and adult CNS. In both the embryonic and adult neurogenic regions, beta1 integrins may act as sensors for the changing extracellular matrix. Here we highlight the integrative functions that beta1 integrins may play in the "niche" by regulating NSC growth factor responsiveness in a timely and spatially(More)
Neural stem cells (NSC) are a tissue-specific subtype of self-renewing and multipotent cells that can give rise to all neural populations. In this review, the importance of maintaining cell-cell contacts in the study of NSC is highlighted, and data obtained from some crucial single-cell studies is compared to results obtained from neurospheres, where(More)
Neural stem cells give rise to undifferentiated nestin-positive progenitors that undergo extensive cell division before differentiating into neuronal and glial cells. The precise control of this process is likely to be, at least in part, controlled by instructive cues originating from the extracellular environment. Some of these cues are interpreted by the(More)
Notch1 and beta1-integrins are cell surface receptors involved in the recognition of the niche that surrounds stem cells through cell-cell and cell-extracellular matrix interactions, respectively. Notch1 is also involved in the control of cell fate choices in the developing central nervous system (Lewis, J. (1998) Semin. Cell Dev. Biol. 9, 583-589). Here we(More)
BACKGROUND miRNAs are a class of small non-coding RNAs that regulate gene expression and have critical functions in various biological processes. Hundreds of miRNAs have been identified in mammalian genomes but only a small number of them have been functionally characterized. Recent studies also demonstrate that some miRNAs have important roles in(More)
Innate lymphoid cells (ILCs) functionally resemble T lymphocytes in cytotoxicity and cytokine production but lack antigen-specific receptors, and they are important regulators of immune responses and tissue homeostasis. ILCs are generated from common lymphoid progenitors, which are subsequently committed to innate lymphoid lineages in the α-lymphoid(More)