Li-qiong Chen

Learn More
Myosins and kinesins are molecular motors that hydrolyse ATP to track along actin filaments and microtubules, respectively. Although the kinesin family includes motors that move towards either the plus or minus ends of microtubules, all characterized myosin motors move towards the barbed (+) end of actin filaments. Crystal structures of myosin II (refs 3-6)(More)
Myosin VI is a reverse direction actin-based motor capable of taking large steps (30-36 nm) when dimerized. However, all dimeric myosin VI molecules so far examined have included non-native coiled-coil sequences, and reports on full-length myosin VI have failed to demonstrate the existence of dimers. Herein, we demonstrate that full-length myosin VI is(More)
Members of the myosin II class of molecular motors have been referred to as "conventional," a term used to describe their ability to form thick filaments, their low duty ratio, the ability of individual motor-containing "heads" to operate independently of each other, and their rate-limiting phosphate release. These features ensure that those motors that(More)
A recent study described a recessive ATPase activating germ-line mutation in smooth-muscle myosin (smmhc/myh11) underlying the zebrafish meltdown (mlt) phenotype. The mlt zebrafish develops intestinal abnormalities reminiscent of human Peutz-Jeghers syndrome (PJS) and juvenile polyposis (JP). To examine the role of MYH11 in human intestinal neoplasia, we(More)
 Site-3 toxins from scorpion and sea anemone bind to Na channels and selectively inhibit current decay. Anthopleurins A and B (ApA and ApB, respectively), toxins found in the venom of the sea anemone Anthopleura xanthogrammica, bind to closed states of mammalian skeletal and cardiac Na channels with differing affinities which arise from differences in(More)
Myosin VI is a reverse direction myosin motor that, as a dimer, moves processively on actin with an average center-of-mass movement of approximately 30 nm for each step. We labeled myosin VI with a single fluorophore on either its motor domain or on the distal of two calmodulins (CaMs) located on its putative lever arm. Using a technique called FIONA(More)
This study examines the steady state activity and in vitro motility of single-headed (S1) and double-headed (HMM) myosin VI constructs within the context of two putative modes of regulation. Phosphorylation of threonine 406 does not alter either the rate of actin filament sliding or the maximal actin-activated ATPase rate of S1 or HMM constructs. Thus, we(More)
It has been postulated that the K+ channel isoform Kv1.3 plays a role in regulatory volume decrease (RVD) in response to hypotonic shock. We show that a mouse cytotoxic T-lymphocyte line, CTLL-2, is devoid of voltage-dependent K+ channels and is unable to volume regulate. Transient transfection of these cells with Kv1.3 reconstitutes their ability to volume(More)
Myosin VI moves toward the pointed (minus) end of actin filaments, the reverse direction of other myosin classes. The myosin VI structure demonstrates that a unique insert at the end of the motor repositions its lever arm and is at least in part responsible for the reversal of directionality. However, it has been proposed that there must be additional(More)
Conformational changes within myosin lead to its movement relative to an actin filament. Several crystal structures exist for myosin bound to various nucleotides, but none with bound actin. Therefore, the effect of actin on the structure of myosin is poorly understood. Here we show that the swing of smooth muscle myosin lever arm requires both ADP and(More)