Learn More
Bubonic plague is transmitted by fleas whose feeding is blocked by a mass of Yersinia pestis in the digestive tract. Y. pestis and the closely related Y. pseudotuberculosis also block the feeding of Caenorhabditis elegans by forming a biofilm on the nematode head. C. elegans mutants with severe motility defects acquire almost no biofilm, indicating that(More)
Yersinia pestis, the cause of bubonic plague, blocks feeding by its vector, the flea. Recent evidence indicates that blockage is mediated by an in vivo biofilm. Y. pestis and the closely related Yersinia pseudotuberculosis also make biofilms on the cuticle of the nematode Caenorhabditis elegans, which block this laboratory animal's feeding. Random screening(More)
The exosporium of Bacillus anthracis spores consists of a basal layer and an external hair-like nap. The nap is composed primarily of the glycoprotein BclA, which contains a collagen-like region with multiple copies of a pentasaccharide side chain. This oligosaccharide possesses an unusual terminal sugar called anthrose, followed by three rhamnose residues(More)
Bubonic plague is transmitted by fleas whose feeding is blocked by a Yersinia pestis biofilm in the digestive tract. Y. pestis also block feeding of Caenorhabditis elegans by forming a biofilm on the nematode head, making the nematode an experimentally tractable surrogate for fleas to study plague transmission. Arabinose 5-phosphate isomerase (API), encoded(More)
The detailed composition and structure of the Caenorhabditis elegans surface are unknown. Previous genetic studies used antibody or lectin binding to identify srf genes that play roles in surface determination. Infection by Microbacterium nematophilum identified bus (bacterially unswollen) genes that also affect surface characteristics. We report that(More)
Lipopolysaccharide (LPS) is the major outer membrane component of gram-negative bacteria. The minimal LPS structure for viability of Escherichia coli and Salmonella enterica serovar Typhimurium is lipid A glycosylated with 3-deoxy-D-manno-octulosonic acid (Kdo) residues. Here we show that another member of the Enterobacteriaceae, Yersinia pestis, can(More)
Bacillus anthracis spores are enclosed by an exosporium comprised of a basal layer and an external hair-like nap. The filaments of the nap are composed of trimers of the collagen-like glycoprotein BclA. The attachment of essentially all BclA trimers to the exosporium requires the basal layer protein BxpB, and both proteins are included in stable(More)
UNLABELLED The outermost exosporium layer of spores of Bacillus anthracis, the causative agent of anthrax, is comprised of a basal layer and an external hairlike nap. The nap includes filaments composed of trimers of the collagenlike glycoprotein BclA. Essentially all BclA trimers are tightly attached to the spore in a process requiring the basal layer(More)
Research on humanoid robotics in Mechatronics and Automation (NUS) was started at the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. These humanoids have been successfully participating in various robotic soccer competitions. In this paper, three major research(More)
  • 1