Learn More
Reputation systems have been popular in estimating the trustworthiness and predicting the future behavior of nodes in a large-scale distributed system where nodes may transact with one another without prior knowledge or experience. One of the fundamental challenges in distributed reputation management is to understand vulnerabilities and develop mechanisms(More)
There is an increasing need for sharing data repositories containing personal information across multiple distributed and private databases. However, such data sharing is subject to constraints imposed by privacy of individuals or data subjects as well as data confidentiality of institutions or data providers. Concretely, given a query spanning multiple(More)
Set-valued data provides enormous opportunities for various data mining tasks. In this paper, we study the problem of publishing set-valued data for data mining tasks under the rigorous differential privacy model. All existing data publishing methods for set-valued data are based on partitionbased privacy models, for example k-anonymity, which are(More)
Differential privacy is a strong notion for protecting individual privacy in privacy preserving data analysis or publishing. In this paper, we study the problem of differentially private histogram release based on an interactive differential privacy interface. We propose two multidimensional partitioning strategies including a baseline cell-based(More)
Sharing real-time aggregate statistics of private data is of great value to the public to perform data mining for understanding important phenomena, such as Influenza outbreaks and traffic congestion. However, releasing time-series data with standard differential privacy mechanism has limited utility due to high correlation between data values. We propose(More)
Monitoring web browsing behavior has benefited many data mining applications, such as top-K discovery and anomaly detection. However, releasing private user data to the greater public would concern web users about their privacy, especially after the incident of AOL search log release where anonymization was not correctly done. In this paper, we adopt(More)
Distributed mobile crowd sensing is becoming a valuable paradigm, enabling a variety of novel applications built on mobile networks and smart devices. However, this trend brings several challenges, including the need for crowd sourcing platforms to manage interactions between applications and the crowd (participants or workers). One of the key functions of(More)