Learn More
Biomedical signal monitoring systems have been rapidly advanced with electronic and information technologies in recent years. However, most of the existing physiological signal monitoring systems can only record the signals without the capability of automatic analysis. In this paper, we proposed a novel brain-computer interface (BCI) system that can acquire(More)
Electroencephalographic (EEG) analysis has been widely adopted for the monitoring of cognitive state changes and sleep stages because abundant information in EEG recording reflects changes in drowsiness, arousal, sleep, and attention, etc. In this study, Micro-Electro-Mechanical Systems (MEMS) based silicon spiked electrode array, namely dry electrodes, are(More)
A generalized EEG-based Neural Fuzzy system to predict driver’s drowsiness was proposed in this study. Driver’s drowsy state monitoring system has been implicated as a causal factor for the safety driving issue, especially when the driver fell asleep or distracted in driving. However, the difficulties in developing such a system are lack of significant(More)
The present study investigated the brain dynamics accompanying spatial navigation based on distinct reference frames. Participants preferentially using an allocentric or an egocentric reference frame navigated through virtual tunnels and reported their homing direction at the end of each trial based on their spatial representation of the passage.(More)
The study adopts the structure of hierarchical classification to develop an automatic sleep stage classification system using forehead (Fpl and Fp2) EEG signals. The hierarchical classification consists of a preliminary wake detection rule, a novel feature extraction method based on American Academy of Sleep Medicine (AASM) scoring manual, feature selection(More)
| Neural prosthetic technologies have helped many patients by restoring vision, hearing, or movement and relieving chronic pain or neurological disorders. While most neural prosthetic systems to date have used invasive or implantable devices for patients with inoperative or malfunctioning external body parts or internal organs, a much larger population of(More)
Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems(More)
| The study of brain–computer interfaces (BCIs) has undergone 30 years of intense development and has grown into a rich and diverse field. BCIs are technologies that enable direct communication between the human brain and external devices. Conventionally, wet electrodes have been employed to obtain unprecedented sensitivity to high-temporal-resolution brain(More)
Drivers’ fatigue has been implicated as a causal factor in many accidents. The development of human cognitive state monitoring system for the drivers to prevent accidents behind the steering wheel has become a major focus in the field of safety driving. It requires a technique that can continuously monitor and estimate the alertness level of drivers. The(More)
1Department of Computer Science, National Chiao-Tung University, 1001 University Road, Hsinchu 30010, Taiwan 2Brain Research Center, National Chiao-Tung University, 1001 University Road, Hsinchu 30010, Taiwan 3Computer and Communication Sciences Division, Electronics and Communication Sciences Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road,(More)