Li Qian Liu

Learn More
BACKGROUND Cochlear hair cells are high-frequency sensory receptors. At the onset of hearing, hair cells acquire fast, calcium-activated potassium (BK) currents, turning immature spiking cells into functional receptors. In non-mammalian vertebrates, the number and kinetics of BK channels are varied systematically along the frequency-axis of the cochlea(More)
The styryl pyridinium dyes, FM1-43 and AM1-43, are fluorescent molecules that can permeate the mechanotransduction channels of hair cells, the sensory receptors of the inner ear. When these dyes are applied to hair cells, they enter the cytoplasm rapidly, resulting in a readily detectable intracellular fluorescence that is often used as a molecular(More)
The appearance of large-conductance, calcium-activated potassium (BK) current is a hallmark of functional maturation in auditory hair cells. Acquisition of this fast-activating current enables high-frequency, graded receptor potentials in all vertebrates and an electrical tuning mechanism in nonmammals. The gene encoding BK alpha subunits is highly(More)
  • 1