Learn More
Our understanding of the cellular implementation of systems-level neural processes like action, thought and emotion has been limited by the availability of tools to interrogate specific classes of neural cells within intact, living brain tissue. Here we identify and develop an archaeal light-driven chloride pump (NpHR) from Natronomonas pharaonis for(More)
Neural interface technology has made enormous strides in recent years but stimulating electrodes remain incapable of reliably targeting specific cell types (e.g. excitatory or inhibitory neurons) within neural tissue. This obstacle has major scientific and clinical implications. For example, there is intense debate among physicians, neuroengineers and(More)
We study the explicit factorization of 2 n r-th cyclotomic polynomials over finite field Fq where q, r are odd with (r, q) = 1. We show that all irreducible factors of 2 n r-th cyclotomic polynomials can be obtained easily from irreducible factors of cyclotomic polynomials of small orders. In particular, we obtain the explicit factorization of 2 n 5-th(More)
Electrically excitable cells are important in the normal functioning and in the pathophysiology of many biological processes. These cells are typically embedded in dense, heterogeneous tissues, rendering them difficult to target selectively with conventional electrical stimulation methods. The algal protein Channelrhodopsin-2 offers a new and promising(More)
Although immune mechanisms can suppress tumour growth, tumours establish potent, overlapping mechanisms that mediate immune evasion. Emerging evidence suggests a link between angiogenesis and the tolerance of tumours to immune mechanisms. Hypoxia, a condition that is known to drive angiogenesis in tumours, results in the release of damage-associated pattern(More)
Aldehyde dehydrogenase isoform 1 (ALDH1) has been proved useful for the identification of cancer stem cells. However, our knowledge of the expression and activity of ALDH1 in common epithelial cancers and their corresponding normal tissues is still largely absent. Therefore, we characterized ALDH1 expression in 24 types of normal tissues and a large(More)
Membrane depolarization has been shown to play an important role in the neural differentiation of stem cells and in the survival and function of mature neurons. Here, we introduce a microbial opsin into ESCs and develop optogenetic technology for stem cell engineering applications, with an automated system for noninvasive modulation of ESC differentiation(More)
Human T cells engineered to express a chimeric antigen receptor (CAR) specific for folate receptor-α (FRα) have shown robust antitumor activity against epithelial cancers in vitro but not in the clinic because of their inability to persist and home to tumor in vivo. In this study, CARs were constructed containing a FRα-specific scFv (MOv19) coupled to the(More)
We describe a new mechanism regulating the tumor endothelial barrier and T cell infiltration into tumors. We detected selective expression of the death mediator Fas ligand (FasL, also called CD95L) in the vasculature of human and mouse solid tumors but not in normal vasculature. In these tumors, FasL expression was associated with scarce CD8(+) infiltration(More)
BACKGROUND The genetic analysis of behavior in Drosophila melanogaster has linked genes controlling neuronal connectivity and physiology to specific neuronal circuits underlying a variety of innate behaviors. We investigated the circuitry underlying the adult startle response, using photoexcitation of neurons that produce the abnormal chemosensory jump 6(More)