Learn More
The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies(More)
BACKGROUND A striking characteristic of the past four influenza pandemic outbreaks in the United States has been the multiple waves of infections. However, the mechanisms responsible for the multiple waves of influenza or other acute infectious diseases are uncertain. Understanding these mechanisms could provide knowledge for health authorities to develop(More)
UNLABELLED The efficacy of current influenza vaccines requires a close antigenic match between circulating and vaccine strains. As such, timely identification of emerging influenza virus antigenic variants is central to the success of influenza vaccination programs. Empirical methods to determine influenza virus antigenic properties are time-consuming and(More)
Geocoris punctipes (Say) and Orius insidiosus (Say) are generalist predators found in a wide range of crops, including cotton (Gossypium hirsutum L.) and maize (Zea mays L.), where they provide important biological control services by feeding on an array of pests, including eggs and small larvae of caterpillars. A high percentage of cotton and maize in the(More)
The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of S. frugiperda was(More)
Metagenomic characterization of water virome was performed in four Mississippi catfish ponds. Although differing considerably from African swine fever virus (ASFV), 48 of 446,100 sequences from 12 samples were similar enough to indicate that they represent new members in the family Asfarviridae. At present, ASFV is the only member of Asfarviridae, and this(More)
To determine whether, and to what extent, influenza A subtype H3 viruses were present in feral swine in the United States, we conducted serologic and virologic surveillance during October 2011-September 2012. These animals were periodically exposed to and infected with A(H3N2) viruses, suggesting they may threaten human and animal health.
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids(More)
Influenza A viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. In April 2009, a novel swine-origin H1N1 virus emerged in North America and caused the first pandemic of the 21st century. Toward the end of 2009, two waves of outbreaks occurred, and then the disease moderated. It(More)
Subtype H7 avian-origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Here we antigenically and genetically characterized 93 AIV isolates from North America (85 from migratory waterfowl [1976-2010], 7 from domestic poultry [1971-2012], and 1 from a seal [1980]).(More)