Li-Juan Duan

Learn More
PHD1, PHD2, and PHD3 are prolyl hydroxylase domain proteins that regulate the stability of hypoxia-inducible factor alpha subunits (HIF-alpha). To determine the roles of individual PHDs during mouse development, we disrupted all three Phd genes and found that Phd2(-/-) embryos died between embryonic days 12.5 and 14.5 whereas Phd1(-/-) or Phd3(-/-) mice(More)
Polycythemia is often associated with erythropoietin (EPO) overexpression and defective oxygen sensing. In normal cells, intracellular oxygen concentrations are directly sensed by prolyl hydroxylase domain (PHD)-containing proteins, which tag hypoxia-inducible factor (HIF) alpha subunits for polyubiquitination and proteasomal degradation by oxygen-dependent(More)
BACKGROUND Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1) is a potential therapeutic target for cardiovascular diseases, but its role in angiogenesis remains controversial. Whereas germline Vegfr-1(-/-) embryos die of abnormal vascular development in association with excessive endothelial differentiation, mice lacking only the kinase domain(More)
Hypoxia promotes angiogenesis, proliferation, invasion, and metastasis of pancreatic cancer. Essentially, all studies of the hypoxia pathway in pancreatic cancer research to date have focused on fully malignant tumors or cancer cell lines, but the potential role of hypoxia inducible factors (HIF) in the progression of premalignant lesions has not been(More)
Here we report that C-terminal Src kinase (Csk), a tyrosine kinase that negatively regulates the activity of Src and related kinases, is important for vascular development. In Csk(-/-) embryos, although vascular tubules were formed and organized into capillary-like networks during the initial genesis of blood vessels, the vessels failed to engage in normal(More)
BACKGROUND The development of the vascular system is a complex process that involves communications among multiple cell types. As such, it is important to understand whether a specific gene regulates vascular development directly from within the vascular system or indirectly from nonvascular cells. Hypoxia-inducible factor-2alpha (Hif-2alpha, or endothelial(More)
Phosphoinositide 3-kinase (PI3K) is activated by transmembrane tyrosine kinases such as vascular endothelial growth factor (VEGF) receptors and Tie2 (tunica intima endothelial kinase 2), both of which are key regulators of vascular development. However, the in vivo role of PI3K during developmental vascularization remains to be defined. Here we demonstrate(More)
This study attempts to address an important clinical issue by identifying potential candidates of VEGF signaling through Flt-1 receptor that trigger angiogenic signal under ischemic stress. To determine the significance of VEGF-Flt-1 (VEGFR1) signaling in ischemic preconditioned (PC) myocardium, we used heterozygous Flt-1 knockout (KO) mice to dissect the(More)
Retinopathy of prematurity is a major side effect of oxygen therapy for preterm infants, and is a leading cause of blindness in children. To date, it remains unclear whether the initial microvascular obliteration is triggered by degradation of hypoxia inducible factor (HIF) α proteins or by other mechanisms such as oxidative stress. Here we show that prolyl(More)
Mouse embryogenesis is dose sensitive to vascular endothelial growth factor-A (VEGF-A), and mouse embryos partially deficient in VEGF-A die in utero because of severe vascular defects. In this study, we investigate the possible causes that underlie this phenomenon. Although the development of vascular defects in VEGF-A-deficient embryos seems to suggest(More)