Li Hong Tseng

Learn More
Coupling HPLC and NMR is one of the most powerful techniques for simultaneous separation and structural elucidation of unknown compounds in mixtures. To date, however, minimizing the detection volume, as is required when coupling NMR with miniaturized separation techniques, has been accompanied by a dramatic loss in resolution of the NMR spectra. Here, we(More)
A novel capillary NMR coupling configuration, which offers the possibility of combining capillary zone electrophoresis (CZE), capillary HPLC (CHPLC), and for the first time capillary electrochromatography (CEC) with nuclear magnetic resonance (NMR), has been developed. The hyphenated technique has a great potential for the analysis of chemical,(More)
Direct coupling of NMR spectroscopic detection with both capillary zone electrophoresis (CZE) and capillary electrochromatography (CEC) was applied to the separation of metabolites of the drug paracetamol in an extract of human urine. Continuous-flow CZE-NMR and CEC-NMR allowed the detection of the major metabolites, the glucuronide and sulfate conjugates(More)
Coupling of gradient capillary electrochromatography (gradient CEC) and capillary zone electrophoresis (CZE) with nuclear magnetic resonance spectroscopy (NMR) was performed using a recently developed capillary NMR interface. This technique was applied for the analysis of pharmaceuticals and food. An analgesic was investigated using isocratic and gradient(More)
In this work, the influence of supplementary pressure on the separation efficiency of pressurized capillary electrochromatography (pCEC) was examined. At low pressures of up to 30 bar, which is more than sufficient to prevent bubble formation, no significant loss in separation efficiency is observed. Even at 100 bar, the efficiency of pCEC is still(More)
Recently the number of studies investigating triterpenoid saponins has drastically increased due to their diverse and potentially attractive biological activities. Currently the literature contains chemical structures of few hundreds of triterpenoid saponins of plant and animal origin. Triterpenoid saponins consist of a triterpene aglycone with one or more(More)
This paper presents the application of directly coupled capillary high-performance liquid chromatography (capillary HPLC) and proton high-field nuclear magnetic resonance spectroscopy (NMR) for structural elucidation of a so-far unknown kitol isomer. One- and two-dimensional continuous- and stopped-flow NMR spectra were recorded in a 180 μm i.d. capillary,(More)
  • 1