Learn More
We used commercial bakers' yeast (Saccharomyces cerevisiae) to study the conversion of d-xylulose to ethanol in the presence of d-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for d-xylulose fermentation was 35 degrees C, and the optimal pH range was 4 to 6. The fermentation of d-xylulose by(More)
d-Xylulose, an intermediate of d-xylose catabolism, was observed to be fermentable to ethanol and carbon dioxide in a yield of greater than 80% by yeasts (including industrial bakers' yeast) under fermentative conditions. This conversion appears to be carried out by many yeasts known for d-glucose fermentation. In some yeasts, xylitol, in addition to(More)
The transcription of rice plastid psbD-psbC genes encoding photosystem II reaction center protein D2 and chlorophyll alpha-binding protein CP43 is closely regulated by light. To elucidate the sequence requirement for the light-responsive promoter of psbD-psbC operon, transcriptional analysis of the rice promoter was performed with deleted mutants and(More)
Xylitol was produced as a metabolic by-product by a number of yeasts when grown on medium containing D-xylose as carbon and energy sources. Among the yeast strains tested, a mutant strain of Candida tropicalis (HXP2) was found to produce xylitol from D-xylose with a high yield (>90%). Ethanol was also produced by HXP2 when D-glucose, D-fructose, or sucrose(More)
The effect of 15 stilbenoids on protein kinase C (PKC) was studied in order to search for naturally occurring PKC inhibitors. All these compounds were isolated from Chinese medicines. Three oligomeric stilbenes from Caragana sinica, alpha-viniferin, kobophenol A and miyabenol C, were shown to intensely inhibit the activity of partially purified rat brain(More)
NF-kappa B has been implicated in the survival and differentiation of PC12 cells. In this study, we examined the effect of the NF-kappa B-inducing kinase (NIK) on these processes. When inducibly expressed in PC12 cells, a kinase-proficient but not -deficient form of NIK promoted neurite process formation and mediated anti-apoptotic signaling. As expected,(More)
Disruption of microbial cells by pressurized carbon dioxide at both subcritical and supercritical temperatures has been previously investigated. This method differs in principle from other disruption techniques and was found to have potential applications for rupture of a variety of microorganisms. However, it is not as effective for some of the microbial(More)
The rate of xylitol production from D-xylose increased with increasing yeast cell density. The optimal temperature for xylitol production is 36 degrees C, and the optimal pH range is from 4.0 to 6.0. At high initial yeast cell concentration of 26 mg/mL, 210 g/L of xylitol was produced from 260 g/L of D-xylose after 96 h of incubation with an indicated yield(More)
An electroporation-mediated method for the study of foreign gene expression within chloroplasts has been developed. The chloroplast expression vector pHD203-GUS, which consists of coding regions for beta-glucuronidase (GUS) and chloramphenicol acetyltransferase (CAT) separated by a double psbA promoter fragment from pea (in opposite orientation) was(More)