Learn More
The Vibrio vulnificus nuclease, Vvn, is a non-specific periplasmic nuclease capable of digesting DNA and RNA. The crystal structure of Vvn and that of Vvn mutant H80A in complex with DNA were resolved at 2.3 A resolution. Vvn has a novel mixed alpha/beta topology containing four disulfide bridges, suggesting that Vvn is not active under reducing conditions(More)
The possible structural and catalytic functions of the nine tryptophan amino acid residues, including Trp(54), Trp(105), Trp(112), Trp(141), Trp(148), Trp(165), Trp(186), Trp(198), and Trp(203) in Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fs beta-glucanase), were characterized using site-directed mutagenesis, initial rate kinetics, fluorescence(More)
Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fsbeta-glucanase) catalyzes the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in beta-D-glucans or lichenan. This is the first report to elucidate the crystal structure of a truncated Fsbeta-glucanase (TFsbeta-glucanase) in complex with beta-1,3-1,4-cellotriose, a major(More)
Glycosyl hydrolase family 16 (GHF16) truncated Fibrobacter succinogenes (TFs) and GHF17 barley 1,3-1,4-beta-D-glucanases (beta-glucanases) possess different structural folds, beta-jellyroll and (beta/alpha)8, although they both catalyze the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in mixed beta-1,3 and beta-1,4(More)
H-N-H is a motif found in the nuclease domain of a subfamily of bacteria toxins, including colicin E7, that are capable of cleaving DNA nonspecifically. This H-N-H motif has also been identified in a subfamily of homing endonucleases, which cleave DNA site specifically. To better understand the role of metal ions in the H-N-H motif during DNA hydrolysis, we(More)
We created 12 mutant enzymes (E11L, F40I, Y42L, N44L, N44Q, E47I, L62G, K64A, K64M, R137M, R137Q, and N139A) from the truncated Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (TF-glucanase). The enzymes were used to investigate the structural and catalytic roles of specific amino acid residues located at the catalytic pocket and having direct(More)
Malic enzymes are widely distributed in nature, and have important biological functions. They catalyze the oxidative decarboxylation of malate to produce pyruvate and CO(2) in the presence of divalent cations (Mg(2+), Mn(2+)). Most malic enzymes have a clear selectivity for the dinucleotide cofactor, being able to use either NAD(+) or NADP(+), but not both.(More)
The 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes (Fsbeta-glucanase) is classified as one of the family 16 glycosyl hydrolases. It hydrolyzes the glycosidic bond in the mixed-linked glucans containing beta-1,3- and beta-1,4-glycosidic linkages. We constructed a truncated form of recombinant Fsbeta-glucanase containing the catalytic domain from(More)
Rumen fungi are a rich source of enzymes degrading lignocelluloses. XynR8 is a glycosyl hydrolase family 11 xylanase previously cloned from unpurified rumen fungal cultures. Phylogenetic analysis suggested that xynR8 was obtained from a Neocallimastix species. Recombinant XynR8 expressed in Escherichia coli was highly active and stable between pH 3.0 and(More)
1,3-1,4-beta-D-Glucanases (EC 3.2.1.73) specifically hydrolyze beta-1,4-glycosidic bonds located prior to beta-1,3-glycosidic linkages in lichenan or beta-D-glucans. It has been suggested that truncated Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (TFsbeta-glucanase) can accommodate five glucose rings in its active site upon enzyme-substrate(More)