Li-Chieh Ching

Learn More
The transient receptor potential vanilloid type 1 (TRPV1) is crucial in the pathogenesis of atherosclerosis; yet its role and underlying mechanism in the formation of macrophage foam cells remain unclear. Here, we show increased TRPV1 expression in the area of foamy macrophages in atherosclerotic aortas of apolipoprotein E-deficient mice. Exposure of mouse(More)
AIMS Accumulation of foam cells in the intima is a hallmark of early-stage atherosclerotic lesions. Ginkgo biloba extract (EGb761) has been reported to exert anti-oxidative and anti-inflammatory properties in atherosclerosis, yet the significance and the molecular mechanisms of action of EGb761 in the formation of macrophage foam cells are not fully(More)
Wogonin, one component in Scutellaria baicalensis Georgi extracts, has several beneficial properties for cancers and inflammatory diseases. However, the efficacy of wogonin in cholesterol metabolism of macrophages remains unknown. In macrophages, cholesterol uptake is controlled by scavenger receptors (SR-A and CD36) and cholesterol efflux by SR-BI,(More)
Erythropoietin (EPO), the key hormone for erythropoiesis, also increases nitric oxide (NO) bioavailability in endothelial cells (ECs), yet the definitive mechanisms are not fully understood. Increasing evidence has demonstrated that β common receptor (βCR) plays a crucial role in EPO-mediated non-hematopoietic effects. We investigated the role of βCR in(More)
α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density(More)
Berberine, a botanical alkaloid purified from Cortidis rhizoma, has effects in cardiovascular diseases, yet the mechanism is not fully understood. Foam cells play a critical role in the progression of atherosclerosis. This study aimed to investigate the effect of berberine on the formation of foam cells by macrophages and the underlying mechanism. Treatment(More)
AIMS We investigated the molecular mechanism underlying the role of transient receptor potential vanilloid type 1 (TRPV1), a Ca(2+)-permeable non-selective cation channel, in the activation of endothelial nitric oxide (NO) synthase (eNOS) in endothelial cells (ECs) and mice. METHODS AND RESULTS In ECs, TRPV1 ligands (evodiamine or capsaicin) promoted NO(More)
The mechanism underlying the dysregulation of cholesterol metabolism and inflammation in atherogenesis is not understood fully. Glycine N-methyltransferase (GNMT) has been implicated in hepatic lipid metabolism and the pathogenesis of liver diseases. However, little is known about the significance of GNMT in atherosclerosis. We showed the predominant(More)
We investigated whether AMP-activated protein kinase (AMPK), a multi-functional regulator of energy homeostasis, is involved in transient receptor potential vanilloid type 1 (TRPV1)-mediated activation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) and mice. In ECs, treatment with evodiamine, the activator of TRPV1, increased the(More)
BACKGROUND In addition to the hematopoietic effect of erythropoietin, increasing evidence suggests that erythropoietin also exerts protective effects for cardiovascular diseases. However, the role of erythropoietin and its underlying mechanism in macrophage foam cell formation are poorly understood. METHODS AND RESULTS Compared with wild-type specimens,(More)