Li-Chiang Lin

Learn More
One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO(2) from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%.(More)
During the formation of metal-organic frameworks (MOFs), metal centres can coordinate with the intended organic linkers, but also with solvent molecules. In this case, subsequent activation by removal of the solvent molecules creates unsaturated 'open' metal sites known to have a strong affinity for CO(2) molecules, but their interactions are still poorly(More)
Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O(More)
We have conducted large-scale screening of zeolite materials for CO2/CH4 and CO2/N2 membrane separation applications using the free energy landscape of the guest molecules inside these porous materials. We show how advanced molecular simulations can be integrated with the design of a simple separation process to arrive at a metric to rank performance of(More)
We present a systematic and efficient methodology to derive accurate (nonpolarizable) force fields from periodic density functional theory (DFT) calculations for use in classical molecular simulations. The methodology requires reduced computation cost compared with other conventional ways. Moreover, the whole process is performed self-consistently in a(More)
Methane (CH4) is an important greenhouse gas, second only to CO2, and is emitted into the atmosphere at different concentrations from a variety of sources. However, unlike CO2, which has a quadrupole moment and can be captured both physically and chemically in a variety of solvents and porous solids, methane is completely non-polar and interacts very weakly(More)
The mechanism of CO2 adsorption in the amine-functionalized metal-organic framework mmen-Mg2(dobpdc) (dobpdc(4-) = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate; mmen = N,N'-dimethylethylenediamine) was characterized by quantum-chemical calculations. The material was calculated to demonstrate 2:2 amine:CO2 stoichiometry with a higher capacity and weaker CO2(More)
Large-scale simulations of aluminosilicate zeolites were conducted to identify structures that possess large CO(2) uptake for postcombustion carbon dioxide capture. In this study, we discovered that the aluminosilicate zeolite structures with the highest CO(2) uptake values have an idealized silica lattice with a large free volume and a framework topology(More)