Learn More
Population cycles that persist in time and are synchronized over space pervade ecological systems, but their underlying causes remain a long-standing enigma. Here we examine the synchronization of complex population oscillations in networks of model communities and in natural systems, where phenomena such as unusual '4- and 10-year cycle' of wildlife are(More)
While a number of theories have been advanced to account for why musical consonance is related to simple frequency ratios, as yet there is no completely satisfying explanation. Here, we explore the theory of synchronization properties of ensembles of coupled neural oscillators to demonstrate why simple frequency ratios may have achieved a special status and(More)
Coral reefs are generally considered to be the most biologically productive of all marine ecosystems, but in recent times these vulnerable aquatic resources have been subject to unusual degradation. The general decline in reefs has been greatly accelerated by mass bleaching in which corals whiten en masse and often fail to recover. Empirical evidence(More)
BACKGROUND Genetic studies have often produced conflicting results on the question of whether distant Jewish populations in different geographic locations share greater genetic similarity to each other or instead, to nearby non-Jewish populations. We perform a genome-wide population-genetic study of Jewish populations, analyzing 678 autosomal microsatellite(More)
Empirical observations often indicate that complexity enhances stability, while most theoretical studies, such as May's (1972) classic paper, point to the opposite. Despite the wide generality of these latter theoretical analyses, our examination of the well-known competitive Lotka±Volterra system reveals that increasing complexity (measured in terms of(More)
BACKGROUND Transmission mechanisms of black-band disease (BBD) in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease.(More)
We study the global spatio-temporal patterns of influenza dynamics. This is achieved by analysing and modelling weekly laboratory confirmed cases of influenza A and B from 138 countries between January 2006 and January 2015. The data were obtained from FluNet, the surveillance network compiled by the the World Health Organization. We report a pattern of(More)
Synthesising the relationships between complexity, connectivity, and the stability of large biological systems has been a longstanding fundamental quest in theoretical biology and ecology. With the many exciting developments in modern network theory, interest in these issues has recently come to the forefront in a range of multidisciplinary areas. Here we(More)
It is now well appreciated that population structure can have a major impact on disease dynamics, outbreak sizes and epidemic thresholds. Indeed, on some networks, epidemics occur only for sufficiently high transmissibility, whereas in others (e.g. scale-free networks), no such threshold effect exists. While the effects of variability in connectivity are(More)