Levi J. Beverly

Learn More
Recent work with mouse models and human leukemic samples has shown that gain-of-function mutation(s) in Notch1 is a common genetic event in T-cell acute lymphoblastic leukemia (T-ALL). The Notch1 receptor signals through a gamma-secretase-dependent process that releases intracellular Notch1 from the membrane to the nucleus, where it forms part of a(More)
Direct communication between arteries and veins without intervening capillary beds is the primary pathology of arteriovenous malformations (AVMs). Although Notch signaling is implicated in embryonic arteriovenous (AV) differentiation, its function in the adult mammalian vasculature has not been established due to the embryonic lethality that often occurs in(More)
The acquisition of metastatic ability by tumor cells is considered a late event in the evolution of malignant tumors. We report that untransformed mouse mammary cells that have been engineered to express the inducible oncogenic transgenes MYC and Kras(D12), or polyoma middle T, and introduced into the systemic circulation of a mouse can bypass(More)
The chromosomal translocation t(7;9)(q34;q34.3) in human T cell acute lymphoblastic leukemia (T-ALL) results in the aberrant expression of the intracellular domain of Notch (N(ic)). Consistent with the current multistep model for tumorigenesis, mice that express N(ic) in T cell progenitors develop a T-ALL-like disease with a lengthened latency. Proviral(More)
Signals that control the fine balance between cell death and cell survival are altered during tumorigenesis. Understanding the mechanisms by which this balance is perturbed, leading to excessive cell survival, is important for designing effective therapies. Proteins belonging to the B-cell lymphoma (BCL) family are known to regulate death responses to(More)
Most, if not all, cancers are composed of cells in which more than one gene has a cancer-promoting mutation. Although recent evidence has shown the benefits of therapies targeting a single mutant protein, little attention has been given to situations in which experimental tumors are induced by multiple cooperating oncogenes. Using combinations of(More)
JAGGED1 is a member of the Delta/Serrate/Lag-2 (DSL) family of proteins that are cell-bound ligands for Notch receptors. Initiation of Notch signaling occurs through a series of proteolytic events upon the binding of Notch to a DSL protein presented on neighboring cells. Whether DSL proteins themselves are capable of initiating an intrinsic signaling(More)
Myelodysplastic syndromes (MDSs) arise from a defective hematopoietic stem/progenitor cell. Consequently, there is an urgent need to develop targeted therapies capable of eliminating the MDS-initiating clones. We identified that IRAK1, an immune-modulating kinase, is overexpressed and hyperactivated in MDSs. MDS clones treated with a small molecule IRAK1(More)
Oncogenic Notch1 mutations are found in most T-lineage acute lymphoblastic leukemias in humans and T-cell lymphomas in mice. However, the mechanism by which Notch1 promotes transformation or maintains malignant cell survival has not been determined fully. Here, we report that expression of the transcription factor lymphoid enhancer factor 1 (Lef1) is Notch(More)
The importance of mitogen-activated protein kinase signaling in melanoma is underscored by the prevalence of activating mutations in N-Ras and B-Raf, yet clinical development of inhibitors of this pathway has been largely ineffective, suggesting that alternative oncogenes may also promote melanoma. Notch is an interesting candidate that has only been(More)