Levente Herényi

Learn More
The risk of transmitting infections by blood transfusion has been substantially reduced. However, alternative methods for inactivation of pathogens in blood and its components are needed. Application of photoactivated cationic porphyrins can offer an approach to remove non-enveloped viruses from aqueous media. Here we tested the virus inactivation(More)
Recently cationic porphyrin-peptide conjugates were synthesized to enhance the cellular uptake of porphyrins or deliver the peptide moiety to the close vicinity of nucleic acids. DNA binding of such compounds was not systematically studied yet. We synthesized two new porphyrin-tetrapeptide conjugates which can be considered as a typical monomer unit(More)
We performed spectral diffusion experiments in trehalose-enriched glycerol/buffer-glass on horseradish peroxidase where the heme was replaced by metal-free mesoporphyrin IX, and compared them with the respective behavior in a pure glycerol/buffer-glass (Schlichter et al., J. Chem. Phys. 2000, 112:3045-3050). Trehalose has a significant influence: spectral(More)
Ongoing research on DNA binding of cationic porphyrin derivatives and their conjugates is a subject of growing interest because of their possible DNA binding and demonstrated biological properties. In this study nucleoprotein binding of tri-cationic meso-tri(4-N-methylpyridyl)-mono-(4-carboxyphenyl)porphyrin (TMPCP) and tetrapeptides conjugated TMPCP(More)
We studied the complexation of meso-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) with HeLa nucleosomes and compared it to our earlier results on T7 phage nucleoprotein complex (NP) and isolated DNA. To identify binding modes and relative concentrations of the bound TMPyP forms, the porphyrin absorption spectra were analyzed at various base pair/porphyrin(More)
The complexation of tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) with free and encapsidated DNA of T7 bacteriophage was investigated. To identify binding modes and relative concentrations of bound TMPyP forms, the porphyrin absorption spectra at various base pair/porphyrin ratios were analyzed. Spectral decomposition, fluorescent lifetime, and circular(More)
One of the most intriguing predictions of energy landscape models is the existence of non-exponential protein folding kinetics caused by hierarchical structures in the landscapes. Here we provide the strongest evidence so far of such hierarchy and determine the time constants and weights of the kinetic components of the suggested hierarchic energy(More)
Recent results of spectral diffusion experiments by spectral hole-burning techniques carried out at cryogenic temperatures on various monomeric heme proteins unequivocally show interesting new features of conformational dynamics of globular proteins that were not emphasized in the literature until now. These new aspects of the protein dynamics are anomalous(More)
We studied the complex formation of tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) with double stranded DNAs and T7 phage nucleoprotein complex. We analyzed the effect of base pair composition of DNA, the presence of capsid protein, and the composition of the microenvironment on the distribution of TMPyP between binding forms as determined by the(More)
Binding of photosensitizers to target cells is a crucial step during the photodynamic effect. Sensitizer distribution is a good indication of whether the chemical is a good candidate for perturbing cell membrane integrity. Hence, the photophysical properties of porphyrinoid sensitizers in microheterogeneous systems such as liposomes are of outstanding(More)