Lev Sarkisov

Learn More
We employ coarse-grained molecular dynamics simulations to understand why certain interaction patterns on the surface of a nanoparticle promote its translocation through a lipid membrane. We demonstrate that switching from a random, heterogeneous distribution of hydrophobic and hydrophilic areas on the surface of a nanoparticle to even, homogeneous patterns(More)
One of the strategic goals of the modern automobile manufacturing industry is to replace gasoline and diesel with alternative fuels such as natural gas. In this report, we elucidate the desired characteristics of an optimal adsorbent for gas storage. The U.S. Department of Energy has outlined several requirements that adsorbents must fulfill for natural gas(More)
Occasional, large amplitude flexibility in metal-organic frameworks (MOFs) is one of the most intriguing recent discoveries in chemistry and material science. Yet, there is at present no theoretical framework that permits the identification of flexible structures in the rapidly expanding universe of MOFs. Here, we propose a simple method to predict whether(More)
In this article, we focus on several types of interactions between lipid membranes and alpha-helical peptides, based on the distribution of hydrophobic and hydrophilic residues along the helix. We employ a recently proposed coarse-grained model MARTINI and test its ability to capture diverse types of behavior. MARTINI provides useful insights on the(More)
We study the interplay between hysteresis and equilibrium behavior in capillary condensation of fluids in mesoporous disordered materials via a mean-field density functional theory of a disordered lattice-gas model. The approach reproduces all major features observed experimentally. We show that the simple van der Waals picture of metastability fails due to(More)
Molecularly imprinted polymers (MIPs) offer a unique opportunity to significantly advance volatile organic compound (VOC) sensing technologies and a number of other applications. However, the development of these applications using MIPs has been hindered by poor understanding of the microstructure of MIPs, geometry of binding sites, and the details of(More)
We perform long-time-scale coarse-grained molecular dynamics simulations of the synthetic amphiphilic LS3 peptide interacting with a DPPC lipid bilayer. Our studies show that within several microseconds, the peptide assembles in a trans-membrane barrel-stave pore. The pore consists of six peptides and has an inner diameter of about 5.2 A, which is(More)
We present mean-field density functional theory calculations and Monte Carlo simulations for a lattice model of a fluid confined in a disordered porous material. The model is obtained by a coarse graining of an off-lattice model of adsorption of simple molecules in silica xerogels. In some of our calculations a model of a porous glass is also considered.(More)
Intracellular uptake of nanoparticles (NPs) may induce phase transitions, restructuring, stretching, or even complete disruption of the cell membrane. Therefore, NP cytotoxicity assessment requires a thorough understanding of the mechanisms by which these engineered nanostructures interact with the cell membrane. In this study, extensive Coarse-Grained(More)