Learn More
The explosive development of protein and peptide drugs has ushered in a great need for effective delivery systems for such drugs. Two decades of studies of protein delivery from polymeric systems has revealed the great potential of gels that respond to environmental stimuli, such as temperature. Protein and peptide release can be engineered to occur in a(More)
Poly(acrylic acid) (PAA) was attached on both termini of Pluronic P85 copolymer (EO27PO39EO27) via atom transfer radical polymerization (ATRP) to produce a novel block copolymer, PAA-b-P85-b-PAA (P85PAA). The P85PAA-DOX complex formation and drug loading were strongly dependent on the PAA segment length and pH, where the protonation of carboxyl groups in(More)
The capability of a family of copolymers comprising Pluronic (PEO-PPO-PEO) surfactants covalently conjugated with poly(acrylic acid) (Pluronic-PAA) to enhance the aqueous solubility and stability of the lactone form of camptothecin (CPT) was studied. The unprotected lactone form of CPT, which possesses cytotoxic activity, is rapidly converted to the(More)
  • Lev Bromberg
  • 2008
Oral administration of anticancer agents is preferred by patients for its convenience and potential for use in outpatient and palliative setting. In addition, oral administration facilitates a prolonged exposure to the cytotoxic agents. Enhancement of bioavailability of emerging cytotoxic agents is a pre-requisite for successful development of oral modes of(More)
A special class of hydrophobically modified polyelectrolytes was studied wherein poly(acrylic acid) (PAA) was conjugated with Pluronic F127 NF surfactant. The Pluronic-PAA copolymer solutions form gels at low concentrations when exposed to bodytemperature. Such gels possess enhanced retention in topical applications. Circular dichroism spectra indicate that(More)
Novel microgels composed of cross-linked copolymers of poly(acrylic acid) and Pluronics were evaluated as possible permeation enhancers for doxorubicin transport using Caco-2 cell monolayers as a gastrointestinal model. Pluronic, triblock copolymers of ethylene oxide (EO) and propylene oxide (PO), were chosen to represent the most hydrophobic (Pluronic L61(More)
Using lipid-impregnated porous cellulose membranes as biomimetic barriers, we tested the hypothesis that to afford effective transmembrane transfer of proteins and nucleic acids, the vehicle solvent should be able to dissolve both the biopolymers and the lipids. While the majority of solvents dissolve one or the other, ethanol and methanol were found to(More)
Drug delivery systems (DDS) capable of releasing an active molecule at the appropriate site and at a rate that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism are particularly appealing. Biocompatible materials sensitive to certain physiological variables or external physicochemical stimuli(More)
Transient rheological properties and mucoadhesion of hydrogels composed of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO, or Pluronic) block copolymers and poly(acrylic acid) were explored. Nine Pluronic copolymers ranging in nominal molecular weight and PPO/PEO content were grafted to PAA through C-C bonds, with or(More)
Pluronic-PAA, a thermogelling copolymer composed of side chains of poly(acrylic acid) (PAA) grafted onto a backbone of Pluronic copolymer, is of interest as a vehicle for the controlled release of compounds. An important feature of such a vehicle is its bioadhesive/mucoadhesive properties, which in the case of Pluronic-PAA are significant due to the(More)