Leticia Gómez-Víquez

Learn More
Ca(2+) efflux from the sarcoplasmic reticulum (SR) is routed primarily through SR Ca(2+) release channels (ryanodine receptors, RyRs). When clusters of RyRs are activated by trigger Ca(2+) influx through L-type Ca(2+) channels (dihydropyridine receptors, DHPR), Ca(2+) sparks are observed. Close spatial coupling between DHPRs and RyR clusters and the(More)
The sarcoplasmic reticulum (SR) of smooth muscle is endowed with two different types of Ca2+ release channels, i.e. inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs). In general, both release channels mobilize Ca2+ from the same internal store in smooth muscle. While the importance of IP3Rs in agonist-induced contraction is well(More)
Notwithstanding several neurotransmission systems are frequently related to memory formation, amnesia and/or therapeutic targets for memory alterations, the role of transporters γ-aminobutyric acid (GABA, GAT1), glutamate (neuronal glutamate transporter excitatory amino acid carrier; EACC1), dopamine (DAT) and serotonin (SERT) is poorly understood. Hence,(More)
Ca(2+) sparks in heart muscle are activated on depolarization by the influx of Ca(2+) through dihydropyridine receptors in the sarcolemmal (SL) and transverse tubule (TT) membranes. The cardiac action potential is thus able to synchronize the [Ca(2+)](i) transient as Ca(2+) release is activated throughout the cell. Increases in the amount of Ca(2+) within(More)
Thapsigargin-sensitive sarco/endoplasmic reticulum Ca(2+) pumps (SERCAs) are involved in maintaining and replenishing agonist-sensitive internal stores. Although it has been assumed that release channels act independently of SERCA pumps, there are data suggesting the opposite. Our aim was to study the relationship between SERCA pumps and the release(More)
We have studied the histamine-induced potentiation of inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release in HeLa cells. Intracellular IP(3) levels were increased by IP(3) dialysis with the whole-cell configuration of the patch-clamp technique (cell dialysis of IP(3)). Low concentrations of extracellular histamine (1 microM) accelerated the rate of(More)
Notwithstanding several neurotransmission systems are frequently related to memory formation; forgetting process and neurotransmission systems or their transporters; the role of γ-aminobutyric acid (GAT1), glutamate (EACC1), dopamine (DAT) and serotonin (SERT) is poorly understood. Hence, in this paper western-blot analysis was used to evaluate expression(More)
We have studied the effects of ryanodine and inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) with thapsigargin, on both [Ca(2+)](i) and the sarcoplasmic reticulum (SR) Ca(2+) level during caffeine-induced Ca(2+) release in single smooth muscle cells. Incubation with 10 microM ryanodine did not inhibit the first caffeine-induced(More)
The use of fluorescent dyes over the past two decades has led to a revolution in our understanding of calcium signaling. Given the ubiquitous role of Ca(2+) in signal transduction at the most fundamental levels of molecular, cellular, and organismal biology, it has been challenging to understand how the specificity and versatility of Ca(2+) signaling is(More)
  • 1