Learn More
Sepsis-associated encephalopathy (SAE) is associated with an increased rate of morbidity and mortality. It is not understood what the exact mechanism is for the brain dysfunction that occurs in septic patients, but brain inflammation and oxidative stress are a possible theory. Such events can occur through the alteration of molecules that perpetuate the(More)
Sepsis is defined as the host's reaction to infection and characterised by a systemic inflammatory response with important clinical implications. Central nervous system dysfunction secondary to sepsis is associated with local generation of pro- and anti-inflammatory cytokines, impaired cerebral microcirculation, an imbalance of neurotransmitters, apoptosis(More)
Animal models of chronic stress represent valuable tools by which to investigate the behavioral, endocrine and neurobiological changes underlying stress-related psychopathologies, such as major depression, and the efficacy of antidepressant therapies. The present study was aimed at investigating the neurochemical effects of the antidepressant tianeptine in(More)
Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly(More)
Sepsis is characterized by systemic biochemical alterations including the central nervous system in the early times and cognitive impairment at later times after sepsis induction in the animal model. Recent studies have shown that, besides its hematological activity, erythropoietin (EPO) has cytoprotective effects on various cells and tissues. In order to(More)
Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a severe deficiency in the activity of the branched-chain α-keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Infections have a significant role in precipitating acute metabolic decompensation in(More)
Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly(More)
Acute leucine intoxication and neurologic deterioration can develop rapidly at any age as a result of net protein degradation precipitated by infection or psychological stress in patients with maple syrup urine disease (MSUD). Here, we investigated the effects of acute and chronic Hyper-BCAA (H-BCAA) administration on pro- and anti-inflammatory cytokines in(More)
The present study investigated stress oxidative parameters and activities of enzymes of the energy metabolism in various brain structures. Rats were subjected to acute and long-term administration of gold nanoparticles (GNPs) with mean diameters of 10nm and 30nm. Adult (60days old) male Wistar rats received a single intraperitoneal injection (acute(More)