Leslie L. Scharfenstein

Learn More
Aspergillus flavus is a ubiquitous saprophyte and is capable of producing many secondary metabolites including the carcinogenic aflatoxins. The A. flavus population that produces small sclerotia (S strain) has been implicated as the culprit for persistent aflatoxin contamination in field crops. We investigated how the plant volatile decanal, a C10 fatty(More)
LaeA of Aspergillus nidulans is a putative methyltransferase and a component of the velvet complex; it is thought to mainly affect expression of genes required for the production of secondary metabolites. We found that although Aspergillus flavus CA14 laeA deletion mutants showed no aflatoxin production, expression of some of the early genes involved in(More)
The fluG gene is a member of a family of genes required for conidiation and sterigmatocystin production in Aspergillus nidulans. We examined the role of the Aspergillus flavus fluG orthologue in asexual development and aflatoxin biosynthesis. Deletion of fluG in A. flavus yielded strains with an approximately 3-fold reduction in conidiation but a 30-fold(More)
Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene of A. parasiticus and A. flavus is the ortholog of Saccharomyces cerevisiae MSN2 that is associated with multi-stress response. Compared to wild type strains, the msnA deletion(More)
The proteins VeA, VelB and LaeA of Aspergillus nidulans form a heterotrimeric complex (the velvet complex) in the dark to coordinate sexual development and production of some secondary metabolites. VeA and VelB of A. nidulans and Aspergillus fumigatus also are repressors of conidiation, but VeA of Aspergillus flavus in studied strains acts positively on(More)
Aflatoxins, the most toxic and carcinogenic family of fungal secondary metabolites, are frequent contaminants of foods intended for human consumption. Previous studies showed that formation of G-group aflatoxins (AFs) from O-methylsterigmatocystin (OMST) by certain Aspergillus species involves oxidation by the cytochrome P450 monooxygenases, OrdA (AflQ) and(More)
Aspergillus flavus aswA (AFLA_085170) is a gene encoding a Zn(II)2Cys6 DNA-binding domain and a transcriptional activation domain, DUF3468. Disruption of aswA yielded strains that made a truncated gene transcript and generated a fungus that produced a greatly increased number of sclerotia. These sclerotia were odd-shaped and non-pigmented (white) and(More)
Biosynthesis of the highly toxic and carcinogenic aflatoxins in select Aspergillus species from the common intermediate O-methylsterigmatocystin has been postulated to require only the cytochrome P450 monooxygenase, OrdA (AflQ). We now provide evidence that the aryl alcohol dehydrogenase NorA (AflE) encoded by the aflatoxin biosynthetic gene cluster in(More)
Aspergillus flavus is able to synthesize a variety of polyketide-derived secondary metabolites including the hepatocarcinogen, aflatoxin B1. The fungus reproduces and disseminates predominantly by production of conidia. It also produces hardened mycelial aggregates called sclerotia that are used to cope with unfavourable growth environments. In the present(More)