Learn More
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare, fatal, segmental premature aging syndrome caused by a mutation in LMNA that produces the farnesylated aberrant lamin A protein, progerin. This multisystem disorder causes failure to thrive and accelerated atherosclerosis leading to early death. Farnesyltransferase inhibitors have ameliorated(More)
Aberrant organ development is associated with a wide spectrum of disorders, from schizophrenia to congenital heart disease, but systems-level insight into the underlying processes is very limited. Using heart morphogenesis as general model for dissecting the functional architecture of organ development, we combined detailed phenotype information from(More)
The transcription factor GATA4 is essential for heart morphogenesis. Heterozygous mutation of GATA4 causes familial septal defects. However, the phenotypic spectrum of heterozygous GATA4 mutation is not known. In this study, we defined the cardiac phenotypes that result from heterozygous mutation of murine Gata4. We then asked if GATA4 mutation occurs in(More)
C16orf35 is a conserved and widely expressed gene lying adjacent to the human α-globin cluster in all vertebrate species. In-depth sequence analysis shows that C16orf35 (now called NPRL3) is an orthologue of the yeast gene Npr3 (nitrogen permease regulator 3) and, furthermore, is a paralogue of its protein partner Npr2. The yeast Npr2/3 dimeric protein(More)
BACKGROUND The purported advantage of ABO-incompatible (ABO-I) listing is to reduce wait times and wait-list mortality among infants awaiting heart transplantation. We sought to describe recent trends in ABO-I listing for US infants and to determine the impact of ABO-I listing on wait times and wait-list mortality. METHODS AND RESULTS In this multicenter(More)
The aorta is the largest artery in the body, yet processes underlying aortic pathology are poorly understood. The arterial media consists of circumferential layers of elastic lamellae and smooth muscle cells (SMCs), and many arterial diseases are characterized by defective lamellae and excess SMCs; however, a mechanism linking these pathological features is(More)
  • 1