Learn More
BACKGROUND The molecular basis of idiopathic dilated cardiomyopathy, a primary myocardial disorder that results in reduced contractile function, is largely unknown. Some cases of familial dilated cardiomyopathy are caused by mutations in cardiac cytoskeletal proteins; this finding implicates defects in contractile-force transmission as one mechanism(More)
The MEF2 site is an essential element of muscle enhancers and promoters that is bound by a nuclear activity found, so far, only in muscle and required for tissue-specific transcription. We have cloned a group of transcription factors from human muscle that are responsible for this activity: They are present in muscle-specific DNA-binding complexes, have a(More)
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare, fatal, segmental premature aging syndrome caused by a mutation in LMNA that produces the farnesylated aberrant lamin A protein, progerin. This multisystem disorder causes failure to thrive and accelerated atherosclerosis leading to early death. Farnesyltransferase inhibitors have ameliorated(More)
The transition from multipotent mesodermal precursor to committed myoblast and its differentiation into a mature myocyte involve molecular events that enable the cell to activate muscle-specific genes. Among the participants in this process is the myocyte-specific enhancer factor 2 (MEF2) family of tissue-restricted transcription factors. These factors,(More)
The transcription factor GATA4 is essential for heart morphogenesis. Heterozygous mutation of GATA4 causes familial septal defects. However, the phenotypic spectrum of heterozygous GATA4 mutation is not known. In this study, we defined the cardiac phenotypes that result from heterozygous mutation of murine Gata4. We then asked if GATA4 mutation occurs in(More)
BACKGROUND Long-term oral corticosteroids have been a mainstay of maintenance immunosuppression in pediatric heart transplantation. In this study, we report early clinical outcomes in a cohort of pediatric heart transplant recipients managed using a steroid-avoidance protocol. METHODS Of the 70 patients who underwent heart transplantation during the study(More)
OBJECTIVE Children with Hutchinson-Gilford progeria syndrome (HGPS) exhibit dramatically accelerated cardiovascular disease (CVD), causing death from myocardial infarction or stroke between the ages of 7 and 20 years. We undertook the first histological comparative evaluation between genetically confirmed HGPS and the CVD of aging. METHODS AND RESULTS We(More)
Aberrant organ development is associated with a wide spectrum of disorders, from schizophrenia to congenital heart disease, but systems-level insight into the underlying processes is very limited. Using heart morphogenesis as general model for dissecting the functional architecture of organ development, we combined detailed phenotype information from(More)
Hutchinson-Gilford progeria syndrome is a rare, segmental premature aging syndrome of accelerated atherosclerosis and early death from myocardial infarction or stroke. This study sought to establish comprehensive characterization of the fatal vasculopathy in Hutchinson-Gilford progeria syndrome and its relevance to normal aging. We performed cardiovascular(More)