Leslie A Schiff

Learn More
Reovirus outer-capsid proteins mu1, sigma3, and sigma1 are thought to be assembled onto nascent core-like particles within infected cells, leading to the production of progeny virions. Consistent with this model, we report the in vitro assembly of baculovirus-expressed mu1 and sigma3 onto purified cores that lack mu1, sigma3, and sigma1. The resulting(More)
Virion uncoating is a critical step in the life cycle of mammalian orthoreoviruses. In cell culture, and probably in extraintestinal tissues in vivo, reovirus virions undergo partial proteolysis within endosomal or/or lysosomal compartments. This process converts the virion into a form referred to as an intermediate subvirion particle (ISVP). In natural(More)
Structure-function studies with mammalian reoviruses have been limited by the lack of a reverse-genetic system for engineering mutations into the viral genome. To circumvent this limitation in a partial way for the major outer-capsid protein sigma3, we obtained in vitro assembly of large numbers of virion-like particles by binding baculovirus-expressed(More)
Reovirus nonstructural protein sigmaNS interacts with reovirus plus-strand RNAs in infected cells, but little is known about the nature of those interactions or their roles in viral replication. In this study, a recombinant form of sigmaNS was analyzed for in vitro binding to nucleic acids using gel mobility shift assays. Multiple units of sigmaNS bound to(More)
BACKGROUND Mammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts. During enteric infections, proteolysis of the reovirus outer capsid protein sigma3 is mediated by pancreatic serine proteases. In contrast, the proteases critical for reovirus replication in the lung are unknown. Neutrophil elastase (NE) is an(More)
  • 1