Learn More
PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a(More)
PINK1 kinase activates the E3 ubiquitin ligase Parkin to induce selective autophagy of damaged mitochondria. However, it has been unclear how PINK1 activates and recruits Parkin to mitochondria. Although PINK1 phosphorylates Parkin, other PINK1 substrates appear to activate Parkin, as the mutation of all serine and threonine residues conserved between(More)
Protein aggregates and damaged organelles are tagged with ubiquitin chains to trigger selective autophagy. To initiate mitophagy, the ubiquitin kinase PINK1 phosphorylates ubiquitin to activate the ubiquitin ligase parkin, which builds ubiquitin chains on mitochondrial outer membrane proteins, where they act to recruit autophagy receptors. Using genome(More)
Mitochondria sustain damage with aging, and the resulting mitochondrial dysfunction has been implicated in a number of diseases including Parkinson disease. We recently demonstrated that the E3 ubiquitin ligase Parkin, which is linked to recessive forms of parkinsonism, causes a dramatic increase in mitophagy and a change in mitochondrial distribution,(More)
Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that(More)
This unit outlines the steps required to prepare a sample for MS analysis following protein separation or enrichment by gel electrophoresis, liquid chromatography, and affinity capture within the context of a bottom-up proteomics workflow in which the protein is first broken up into peptides, either by chemical or enzymatic digestion, prior to MS analysis.(More)
Keratin 17 (K17) is a type I intermediate filament protein that is constitutively expressed in ectoderm-derived epithelial appendages and robustly induced in epidermis following injury, during inflammation, and in chronic diseases such as psoriasis and cancer. Mutations within K17 are responsible for two rare diseases related to ectodermal dysplasias.(More)
S-nitrosation (SNO) of mitochondrial protein cysteines can be cardioprotective. Several targets have been implicated, yet the scope and identification of specific residues has not been fully assessed. To address this, a comprehensive assessment of mitochondrial SNO-modifiable cysteines was performed to determine nitric oxide (NO) susceptible pathways and(More)
An increasing body of evidence points to mitochondrial dysfunction as a contributor to the molecular pathogenesis of neurodegenerative diseases such as Parkinson's disease. Recent studies of the Parkinson's disease associated genes PINK1 (ref. 2) and parkin (PARK2, ref. 3) indicate that they may act in a quality control pathway preventing the accumulation(More)
Ischemic preconditioning is characterized by resistance to ischemia reperfusion injury in response to previous short ischemic episodes, a protective effect that can be mimicked pharmacologically. The underlying mechanism of protection remains controversial and requires greater understanding before it can be fully exploited therapeutically. To investigate(More)