Learn More
Intermittent hypoxia (IH) during sleep, a critical feature of sleep apnea, induces significant neurobehavioral deficits in the rat. Cyclooxygenase (COX)-2 is induced during stressful conditions such as cerebral ischemia and could play an important role in IH-induced learning deficits. We therefore examined COX-1 and COX-2 genes and COX-2 protein expression(More)
Intermittent hypoxia (IH) during sleep induces significant neurobehavioral deficits in the rat. Since nitric oxide (NO) has been implicated in ischemia-reperfusion-related pathophysiological consequences, the temporal effects of IH (alternating 21% and 10% O(2) every 90 s) and sustained hypoxia (SH; 10% O(2)) during sleep for up to 14 days on the induction(More)
Episodic hypoxia, a characteristic feature of obstructive sleep apnea, induces cellular changes and apoptosis in brain regions associated with neurocognitive function. To investigate whether mild, intermittent hypoxia would induce more extensive neuronal damage than would a similar degree of sustained hypoxia, rat pheochromocytoma PC-12 neuronal cells were(More)
Tyrosine hydroxylase, a hypoxia-regulated gene, may be involved in tissue adaptation to hypoxia. Intermittent hypoxia, a characteristic feature of sleep apnea, leads to significant memory deficits, as well as to cortex and hippocampal apoptosis that are absent after sustained hypoxia. To examine the hypothesis that sustained and intermittent hypoxia induce(More)
The effects of chronic sustained hypoxia (SH) on ventilation have been thoroughly studied. However, the effects of intermittent hypoxia (IH), a more prevalent condition in health and disease are currently unknown. We hypothesized that the ventilatory consequences of SH and IH may differ and be related to changes in N-methyl-D-aspartate (NMDA) glutamate(More)
Hypoxia is a common environmental stress that influences signaling pathways and cell function. Previous studies from our laboratory have identified significant differences in cellular responses to sustained or intermittent hypoxia with the latter proving more cytotoxic. We hypothesized that differences in susceptibility of neurons to intermittent (IH) and(More)
Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea, leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in the adult rat. We report that in Sprague-Dawley rats the initial IH-induced impairments in spatial learning are followed by a partial functional recovery over time, despite(More)
Heat shock protein 90 (Hsp90) is a chaperone protein regulating PC-12 cell survival by binding and stabilizing Akt, Raf-1, and Cdc37. Hsp90 inhibitor geldanamycin (GA) cytotoxicity has been attributed to the disruption of Hsp90 binding, and the contribution of oxidative stress generated by its quinone group has not been studied in this context. Reactive(More)
Chronic intermittent hypoxia, a characteristic feature of sleep-disordered breathing, induces hypertension through augmented sympathetic nerve activity and requires the presence of functional carotid body arterial chemoreceptors. In contrast, chronic sustained hypoxia does not alter blood pressure. We therefore analyzed the biosynthetic pathways of(More)
The CA1 and CA3 regions of the hippocampus markedly differ in their susceptibility to hypoxia in general, and more particularly to the intermittent hypoxia that characterizes sleep apnea. Proteomic approaches were used to identify proteins differentially expressed in the CA1 and CA3 regions of the rat hippocampus and to assess changes in protein expression(More)