Leposava Antonovic

Learn More
We reported previously that infection of C3H/HeOuJ (HeOu) mice with the murine intestinal pathogen Citrobacter rodentium caused a selective modulation of hepatic cytochrome P450 (P450) gene expression in the liver that was independent of the Toll-like receptor 4. However, HeOu mice are much more sensitive to the pathogenic effects of C. rodentium infection,(More)
Citrobacter rodentium is the rodent equivalent of human enteropathogenic Escherichia coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines, and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice [which lack functional toll-like(More)
The cytochrome P450 (CYP) superfamily constitutes a collection of enzymes responsible for the metabolism of a wide array of endo- and xenobiotic compounds. Much of the knowledge on substrate specificity and genetic identification of the various CYP isoforms is derived from research in rodents and humans and only limited information has been captured in the(More)
Drug metabolism is a core determinant of the dose-effectiveness-toxicity relationship of many compounds. It is also critical to the human food safety assessment of drug residues in the edible tissues of food-producing animals. This article describes the current state of knowledge regarding the role of the cytochrome P450 superfamily of enzymes in(More)
Inflammatory processes are involved in the pathogenesis and/or progression of acute central nervous system (CNS) infection, traumatic brain injury and neurodegenerative disorders among others indicating the need for novel strategies to limit neuroinflammation. Eicosanoids including leukotrienes, particularly leukotriene B(4) (LTB(4)) are principle(More)
Cytochrome p450 (CYP) 4Fs metabolize leukotriene B(4) and other inflammatory mediators in the arachidonic acid cascade. Here we show that lipopolysaccharide (LPS) treatment suppresses CYP4F4 and up-regulates CYP4F5 mRNA expression in rat liver whereas renal CYP4Fs are essentially unchanged. BaSO(4) treatment, in contrast, increases both hepatic and renal(More)
  • 1