Learn More
We propose a novel blind image deconvolution (BID) regularization framework for compressive sensing (CS) based imaging systems capturing blurred images. The proposed framework relies on a constrained optimization technique, which is solved by a sequence of unconstrained sub-problems, and allows the incorporation of existing CS reconstruction algorithms in(More)
In this paper, we present a novel passive millimeter-wave (PMMW) imaging system designed using compressive sensing principles. We employ randomly encoded masks at the focal plane of the PMMW imager to acquire incoherent measurements of the imaged scene. We develop a Bayesian reconstruction algorithm to estimate the original image from these measurements,(More)
The idea of compressive sensing in imaging refers to the reconstruction of an unknown image through a small number of incoherent measurements. Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. In this paper, we combine these two problems trying to estimate the unknown sharp image and blur kernel(More)
We present a prototype compressive video camera that encodes scene movement using a translated binary photomask in the optical path. The encoded recording can then be used to reconstruct multiple output frames from each captured image, effectively synthesizing high speed video. The use of a printed binary mask allows reconstruction at higher spatial(More)
In this paper, we briefly describe a single detector passive millimeter-wave imaging system, which has been previously presented. The system uses a cyclic sensing matrix to acquire incoherent measurements of the observed scene and then reconstructs the image using a Bayesian approach. The cyclic nature of the sensing matrix allows for the design of a single(More)
Passive millimeter-wave (PMMW) imagers using a single radio-meter, called single pixel imagers, employ raster scanning to produce images. A serious drawback of such a single pixel imaging system is the long acquisition time needed to produce a high-fidelity image, arising from two factors: (a) the time to scan the whole scene pixel by pixel and (b) the(More)
In this work we present a deep learning framework for video compressive sensing. The proposed formulation enables recovery of video frames in a few seconds at significantly improved reconstruction quality compared to previous approaches. Our investigation starts by learning a linear mapping between video sequences and corresponding measured frames which(More)
We propose a novel blind image deconvolution (BID) regularization framework for compressive passive millimeter-wave (PMMW) imaging systems. The proposed framework is based on the variable-splitting optimization technique, which allows us to utilize existing compressive sensing reconstruction algorithms in compressive BID problems. In addition, a non-convex(More)
The use of multiple hypothesis tracking has proven to provide significant performance benefits over the single hypothesis GNN or the PDA algorithm. Automotive sensors like radars, laser-scanners or vision systems are being integrated into vehicles for commercial or scientific purposes, in increasing numbers over the last years. As a result, there is(More)
The maximum achievable frame-rate for a video camera is limited by the sensor's pixel readout rate. The same sensor may achieve either a slow frame-rate at full resolution (e.g., 60 fps at 4 Mpixel resolution) or a fast frame-rate at low resolution (e.g., 240 fps at 1 Mpixel resolution). Higher frame-rates are achieved using pixel readout modes (e.g.,(More)