Leonidas G. Bachas

Learn More
An array of aligned carbon nanotubes (CNTs) was incorporated across a polymer film to form a well-ordered nanoporous membrane structure. This membrane structure was confirmed by electron microscopy, anisotropic electrical conductivity, gas flow, and ionic transport studies. The measured nitrogen permeance was consistent with the flux calculated by Knudsen(More)
Nanotechnology is a rapidly growing industry that has elicited much concern because of the lack of available toxicity data. Exposure to ultrafine particles may be a risk for the development of vascular diseases due to dysfunction of the vascular endothelium. Increased endothelial adhesiveness is a critical first step in the development of vascular diseases,(More)
The objective of this work was to demonstrate the bioactivity of parathyroid hormone (1-34) (PTH) delivered through a single molecule of bisphosphonate to improve tissue/cell interactions. Bifunctional hydrazine-bisphosphonates (HBPs) with varying length and lipophilicity were used as a drug delivery vehicle. PTH was oxidized with periodate treatment to(More)
Oriented immobilization of proteins is an important step in creating protein-based functional materials. In this study, a method was developed to orient proteins on hydroxyapatite (HA) surfaces, a widely used bone implant material, to improve protein bioactivity by employing enhanced green fluorescent protein (EGFP) and β-lactamase as model proteins. These(More)
This work demonstrates the use of the protein calmodulin, CaM, as an affinity tag for the reversible immobilization of enzymes on surfaces. Our strategy takes advantage of the of the reversible, calcium-mediated binding of CaM to its ligand phenothiazine and of the ability to produce fusion proteins between CaM and a variety of enzymes to reversibly(More)
Polycysteine and other polyamino acid functionalized microfiltration membrane sorbents work exceptionally well for the removal and recovery of toxic heavy metals from aqueous streams. These are high capacity sorbents (0.3-3.7 mg/cm2) with excellent accessibility and selectivity for heavy metals, such as Hg(II), Pb(II), and Cd(II) over nontoxic components(More)
A new type of composite material based on carbon nanotubes and an aqueous sol-gel process has been developed. The electrochemical characteristics of these composites were investigated and compared to composites made with an alkoxy silane sol-gel process. The use of carbon nanotubes, as the conductive part of the composite, facilitated fast electron transfer(More)
Certain proteins undergo a substantial conformational change in response to a given stimulus. This conformational change can manifest in different manners and result in an actuation, that is, catalytic or signalling event, movement, interaction with other proteins, and so on. In all cases, the sensing-actuation process of proteins is initiated by a(More)
Biofunctional membranes normally involve the random immobilization of biomolecules to porous, polymeric membranes, often through the numerous lysine residues on the protein. In this process, bioactivity is significantly decreased largely due to different orientations of the biomolecule with respect to the membrane or to multiple point attachment. To(More)
Ionophore topology has a profound effect on the behavior of ion-selective electrodes. This is demonstrated with a new class of ionophores that incorporates aminochromenone moieties linked through urea spacers to different scaffolds that preorganize the ionophore binding cleft into tripodal topologies. Tris(2-aminoethylamine) and(More)