Leonid V. Gening

Learn More
Microcin C51 (MccC51) is an antimicrobial nucleotide-heptapeptide produced by a natural Escherichia coli strain. A 5.7-kb fragment of the pC51 plasmid carrying the genes involved in MccC51 production, secretion, and self-immunity was sequenced, and the genes were characterized. The sequence of the MccC51 gene cluster is highly similar to that of the MccC7(More)
Analysis of DNA polymerase ι (Pol ι) enzymic activity in different classes of eukaryotes has shown that error-prone activity of this enzyme can be found only in mammals, and that it is completely absent from organisms that are at lower stages of development. It was supposed that the emergence of the error-prone Pol ι activity in mammals is caused by(More)
DNA polymerase iota (Pol ι) which has some peculiar features and is characterized by an extremely error prone DNA synthesis, belongs to the group of enzymes preferentially activated by Mn2+ instead of Mg2+. In this work, using misGvA method (misincorporation of “G” versus “A”, method of Gening) we studied the effect of Mn2+ on DNA synthesis in cell extracts(More)
An increased level of mutagenesis, partially caused by imbalanced activities of error prone DNA polymerases, is a key symptom of cell malignancy. To clarify the possible role of incorrect DNA polymerase ι (Pol ι) function in increased frequency of mutations in mammalian cells, the activity of this enzyme in extracts of cells of different mouse organs and(More)
The recently discovered DNA polymerase iota differs greatly from the numerous eukaryotic and prokaryotic DNA polymerases known previously in its ability to catalyze error-prone DNA synthesis. Using homogeneous preparations of the enzyme, it was shown previously that DNA polymerase iota incorporated preferentially dGMP opposite the thymidine of the template(More)
Analysis of DNA polymerase iota (Pol iota) enzymic activity in different classes of eukaryotes has shown that error-prone activity of this enzyme can be found only in mammals, and that it is completely absent from organisms that are at lower stages of development. It was supposed that the emergence of the error-prone Pol iota activity in mammals is caused(More)
This review describes the properties of some specialized DNA polymerases participating in translesion synthesis of DNA. Special attention is given to these properties in vivo. DNA polymerase iota (Polι) of mammals has very unusual features and is extremely error-prone. Based on available data, a hypothesis is proposed explaining how mammalian cells can(More)
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a(More)
The hepatitis B infection leads to various profound pathological processes in liver metabolism. Some biochemical alterations detectable by blood analysis are currently used for a preliminary evaluation of the infection. Based on existing data we present here evidence that non-protein amino acid L-homoserine is a pathological, hepatitis B-induced metabolite(More)
Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation(More)