Leoni I. Palmer

  • Citations Per Year
Learn More
The first example of a Piancatelli rearrangement of alcohols is demonstrated utilizing dysprosium(III) triflate as a catalyst to access oxaspirocycles in a highly diastereoselective manner. The cascade reaction constructs the spirocyclic ether ring system and the tertiary stereocenter in a single operation and is experimentally easy to perform.
The majority of industrial chemical processes are based on petrochemical feedstock; limited supplies of crude oil are declining, which has resulted in an ever-gaping need for the development of routes to chemicals, materials, and fuels from renewable resources such as biomass.[1] Materials derived from nonedible renewable resources, ideally byproducts in(More)
The observed rate of reaction in the dysprosium triflate catalyzed aza-Piancatelli rearrangement is controlled by a key off-cycle binding between aniline and catalyst. Deconvoluting the role of these ancillary species greatly broadens our understanding of factors affecting the productive catalytic pathway. We demonstrate that the rate of reaction is(More)
This article describes the aza-Piancatelli rearrangement with hydroxylamines to 4-aminocyclopentenones and subsequent transformations that highlight the versatility of the cyclopentene scaffold and the value of the hydroxylamine nucleophile in this transformation.
Two complementary approaches are presented for the synthesis of the quinone chromophores of the naphthoquinone ansamycins and related natural products. The first involves the use of an improved protocol for the manganese(III) acetate mediated cyclization of 5-aryl-1,3-dicarbonyl compounds to β-naphthols, leading to the simple, scalable preparation of(More)
It has been convincingly argued that molecular machines that manipulate individual atoms, or highly reactive clusters of atoms, with Ångström precision are unlikely to be realized. However, biological molecular machines routinely position rather less reactive substrates in order to direct chemical reaction sequences, from sequence-specific synthesis by the(More)
  • 1