Learn More
The characterization of the conformational properties of intrinsically disordered proteins (IDPs), and their interaction modes with physiological partners has recently become a major research topic for understanding biological function on the molecular level. Although multidimensional NMR spectroscopy is the technique of choice for the study of IDPs at(More)
Siderocalins are atypical lipocalins able to capture siderophores with high affinity. They contribute to the innate immune response by interfering with bacterial siderophore-mediated iron uptake but are also involved in numerous physiological processes such as inflammation, iron delivery, tissue differentiation, and cancer progression. The Q83 lipocalin was(More)
A novel NMR method is demonstrated for the investigation of protein ligand interactions. In this approach an adiabatic fast passage pulse, i.e. a long, weak pulse with a linear frequency sweep, is used to probe (1)H-(1)H NOEs. During the adiabatic fast passage the effective rotating-frame NOE is a weighted average of transverse and longitudinal(More)
An ultra-high-resolution NMR experiment for the measurement of intraresidue (1)H(i)-(15)N(i)-(13)C'(i) dipolar-chemical shift anisotropy relaxation interference is employed to extract information about local backbone geometries in intrinsically disordered proteins. The study of tumor suppressor BASP1 revealed a population shift of β-turn geometries at low(More)
Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity and undergo rearrangements of the time-averaged conformational ensemble on changes of environmental conditions (e.g., in ionic strength, pH, molecular crowding). In contrast to stably folded proteins, IDPs often form compact conformations at acidic pH. The(More)
Siderocalins are particular lipocalins that participate in the innate immune response by interfering with bacterial siderophore-mediated iron uptake. Additionally, siderocalins are involved in several physiological and pathological processes such as inflammation, iron delivery, tissue differentiation, and cancer progression. Here we show that siderocalin(More)
Brain acid-soluble protein 1 (BASP1, CAP-23, NAP-22) appears to be implicated in diverse cellular processes. An N-terminally myristoylated form of BASP1 has been discovered to participate in the regulation of actin cytoskeleton dynamics in neurons, whereas non-myristoylated nuclear BASP1 acts as co-suppressor of the potent transcription regulator WT1(More)
Brain acid-soluble protein 1 (BASP1, CAP-23, NAP-22) appears to be implicated in diverse cellular processes. An N-terminally myristoylated form of BASP1 has been discovered to participate in the regulation of actin cytoskeleton dynamics in neurons, whereas non-myristoy-lated nuclear BASP1 acts as co-suppressor of the potent transcription regulator WT1(More)
The importance of NMR spectroscopy in unraveling the structural and dynamic properties of proteins is ever-expanding owing to progress in experimental techniques, hardware development, and novel labeling approaches. Multiple sophisticated methods of aliphatic residue labeling can be found in the literature, whereas the selective incorporation of NMR active(More)
Fragment-based lead discovery (FBLD) has become a prime component of the armamentarium of modern drug design programs. FBLD identifies low molecular weight ligands that weakly bind to important biological targets. Three-dimensional structural information about the binding mode is provided by X-ray crystallography or NMR spectroscopy and is subsequently used(More)