Leonel Gómez

Learn More
Electroreceptive fish detect nearby objects by processing the information contained in the pattern of electric currents through their skin. In weakly electric fish, these currents arise from a self-generated field (the electric organ discharge), depending on the electrical properties of the surrounding medium. The electric image can be defined as the(More)
The pooled spike trains of correlated presynaptic terminals acting synchronously upon a single neuron are realizations of cluster point processes: the notions of spikes synchronizing in bursts and of points bunching in clusters are conceptually identical. The primary processes constituent specifies the timing of the cluster series; subsidiary processes and(More)
Afferent responses to the fish's own electric organ discharge were explored in the electrosensory lobe of the mormyrid fish Gnathonemus petersii. In order to understand the neural encoding of natural sensory images, responses were examined while objects of different conductivities were placed at different positions along the skin of the fish, i.e. at(More)
Primary auditory afferents are generally perceived as passive, timing-preserving lines of communication. Contrasting this view, identifiable auditory afferents to the goldfish Mauthner cell undergo potentiation of their mixed--electrical and chemical--synapses in response to high-frequency bursts of activity. This property likely represents a mechanism of(More)
Spike timing-dependent plasticity that follows anti-Hebbian rules has been demonstrated at synapses between parallel fibers and inhibitory interneurons known as medium ganglionic layer (MG) neurons in the cerebellum-like electrosensory lobe of mormyrid fish. This plasticity is expressed when presynaptic activation is associated with a characteristically(More)
Anesthetics may induce specific changes that alter the balance of activity within neural networks. Here we describe the effects of the GABA(A) receptor potentiating anesthetic etomidate on sensory processing, studied in a cerebellum-like structure, the electrosensory lateral line lobe (ELL) of mormyrid fish, in vitro. Previous studies have shown that the(More)
The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional(More)
The behavior of two pacemaker neurons simulated by leaky integrators and connected reciprocally by synapses was studied. In every case the firing of both neurons phase-locks. The resulting limit cycle may or may not show simultaneous firing of both neurons. When both synapses are excitatory, phase-locking with simultaneous neuronal firing is always present.(More)