Learn More
Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central(More)
Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled m-opioid receptor (m-OR) in the central(More)
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution, and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation without specific permission. The b 2-adrenoceptor (b 2 AR) was one of the first Family A(More)
G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the(More)
The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use(More)
A classical quantitative structure-activity relationship (Hansch) study and artificial neural networks (ANNs) have been applied to a training set of 32 substituted phenylpiperazines with affinity for 5-HT(1A) and alpha(1)-adrenergic receptors, to evaluate the structural requirements that are responsible for 5-HT(1A)/alpha(1) selectivity. The resulting(More)
G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in(More)
The extended classic ternary complex model predicts that a G protein-coupled receptor (GPCR) exists in only two interconvertible states: an inactive R, and an active R(*). However, different structural active R(*) complexes may exist in addition to a silent inactive R ground state (Rg). Here we demonstrate, in a cellular context, that several R(*) states of(More)
CCR5 is a G protein-coupled receptor responding to four natural agonists, the chemokines RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta, and monocyte chemotactic protein (MCP)-2, and is the main co-receptor for the macrophage-tropic human immunodeficiency virus strains. We(More)
G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal(More)