Learn More
  • Aashish Manglik, Andrew C. Kruse, Tong Sun Kobilka, Foon Sun Thian, Jesper M. Mathiesen, Roger K. Sunahara +4 others
  • 2012
Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central(More)
  • Michael P. Bokoch, Yaozhong Zou, Søren G. F. Rasmussen, Corey W. Liu, Rie Nygaard, Daniel M. Rosenbaum +10 others
  • 2010
G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the(More)
The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use(More)
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution, and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation without specific permission. The b 2-adrenoceptor (b 2 AR) was one of the first Family A(More)
G-protein coupled receptors (GPCRs) comprise the largest family of proteins in our body, which have many important physiological functions and are implicated in the pathophysiology of many serious diseases. GPCRs therefore are significant targets in pharmaceutical research. GPCRs share the common architecture of seven plasma membrane-spanning segments(More)
CCR5 is a G protein-coupled receptor responding to four natural agonists, the chemokines RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta, and monocyte chemotactic protein (MCP)-2, and is the main co-receptor for the macrophage-tropic human immunodeficiency virus strains. We(More)
G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in(More)
MOTIVATION Integral polytopic membrane proteins contain only two types of folds in their transmembrane domains: α-helix bundles and β-barrels. The increasing number of available crystal structures of these proteins permits an initial estimation of how sequence variability affects the structure conservation in their transmembrane domains. We, thus, aim to(More)
G protein-coupled receptors (GPCRs) interact with an extraordinary diversity of ligands by means of their extracellular domains and/or the extracellular part of the transmembrane (TM) segments. Each receptor subfamily has developed specific sequence motifs to adjust the structural characteristics of its cognate ligands to a common set of conformational(More)
  • Xavier Viñals, Estefanía Moreno, Laurence Lanfumey, Arnau Cordomí, Antoni Pastor, Rafael de La Torre +10 others
  • 2015
Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC.(More)