Leonardo Guidoni

Learn More
Extracellular tetraethylammonium (TEA+) inhibits the current carried out by K+ ions in potassium channels. Structural models of wild-type (WT) and Y82C KcsA K+ channel/TEA+ complexes are here built using docking procedures, electrostatics calculations and molecular dynamics simulations. The calculations are based on the structure determined by Doyle et al.(More)
We present a theoretical study on structural and electronic aspects of K+ permeation through the binding sites of the KcsA channel's selectivity filter. Density functional calculations are carried out on models taken from selected snapshots of a molecular dynamics simulation recently reported [FEBS Lett. 477 (2000) 37]. During the translocation process from(More)
Quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello simulations were performed to estimate the coordination numbers of K(+) and Na(+) ions in the selectivity filter of the KcsA channel, and in water. At the DFT/BLYP level, K(+) ions were found to display an average coordination number of 6.6 in the filter, and 6.2 in water. Na(+) ions displayed an(More)
Although a few x-ray structures of the KcsA K(+) channel have been crystallized several issues concerning the mechanisms of the ionic permeation and the protonation state of the selectivity filter ionizable side chains are still open. Using a first-principles quantum mechanical/molecular mechanical simulation approach, we have investigated the protonation(More)
The structure and dynamics of the retinal chromophore of rhodopsin are investigated systematically in different environments (vacuum, methanol solution, and protein binding pocket) and with different computational approaches (classical, quantum, and hybrid quantum mechanics/molecular mechanics (QM/MM) descriptions). Finite temperature effects are taken into(More)
The performance of popular molecular mechanics (MM) force fields in treating problems that involve ion-channel interactions is explored. We have used quantum mechanical/molecular mechanical (QM/MM) calculations to compute the electrostatic potential inside the selectivity filter of the KcsA potassium channel. A comparison is made with the result of(More)
Due to the crucial role played by electron correlation, the accurate determination of ground state geometries of π-conjugated molecules is still a challenge for many quantum chemistry methods. Because of the high parallelism of the algorithms and their explicit treatment of electron correlation effects, Quantum Monte Carlo calculations can offer an accurate(More)
The penta-2,4-dieniminium cation (PSB3) displays similar ground state and first excited state potential energy features as those of the retinal protonated Schiff base (RPSB) chromophore in rhodopsin. Recently, PSB3 has been used to benchmark several electronic structure methods, including highly correlated multireference wave function approaches,(More)
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the(More)
In this work, we study the electronic and geometrical properties of the ground state of the Retinal Minimal Model C(5)H(6)NH(2)(+) using the variational Monte Carlo (VMC) method by means of the Jastrow antisymmetrized geminal power (JAGP) wavefunction. A full optimization of all wavefunction parameters, including coefficients, and exponents of the atomic(More)