Learn More
Current models of motor cortical plasticity, developed in studies on experimental animals, emphasize the importance of the conjoint activity of somatosensory afferents and intrinsic motor cortical circuits. The hypothesis that an enduring change in excitability in the cortical output circuitry can be induced in the human motor cortex by a paired-stimulation(More)
We studied the effects of low-frequency transcranial magnetic stimulation (TMS) on motor cortex excitability in humans. TMS at 0.1 Hz for 1 hour did not change cortical excitability. Stimulation at 0.9 Hz for 15 minutes (810 pulses), similar to the parameters used to induce long-term depression (LTD) in cortical slice preparations and in vivo animal(More)
Effects of weak electrical currents on brain and neuronal function were first described decades ago. Recently, DC polarization of the brain was reintroduced as a noninvasive technique to alter cortical activity in humans. Beyond this, transcranial direct current stimulation (tDCS) of different cortical areas has been shown, in various studies, to result in(More)
The process of acquiring motor skills through the sustained performance of complex movements is associated with neural plasticity. However, it is unknown whether even simple movements, repeated over a short period of time, are effective in inducing cortical representational changes. Whether the motor cortex can retain specific kinematic aspects of a(More)
Associative stimulation has been shown to enhance excitability in the human motor cortex (Stefan et al. 2000); however, little is known about the underlying mechanisms. An interventional paired associative stimulation (IPAS) was employed consisting of repetitive application of single afferent electric stimuli, delivered to the right median nerve, paired(More)
Synaptic plasticity is conspicuously dependent on the temporal order of the pre- and postsynaptic activity. Human motor cortical excitability can be increased by a paired associative stimulation (PAS) protocol. Here we show that it can also be decreased by minimally changing the interval between the two associative stimuli. Corticomotor excitability of the(More)
Motor skills can take weeks to months to acquire and can diminish over time in the absence of continued practice. Thus, strategies that enhance skill acquisition or retention are of great scientific and practical interest. Here we investigated the effect of noninvasive cortical stimulation on the extended time course of learning a novel and challenging(More)
Despite its increasing use in experimental and clinical settings, the cellular and molecular mechanisms underlying transcranial direct current stimulation (tDCS) remain unknown. Anodal tDCS applied to the human motor cortex (M1) improves motor skill learning. Here, we demonstrate in mouse M1 slices that DCS induces a long-lasting synaptic potentiation(More)
1. We used transcranial magnetic stimulation (TMS) to study the role of plastic changes of the human motor system in the acquisition of new fine motor skills. We mapped the cortical motor areas targeting the contralateral long finger flexor and extensor muscles in subjects learning a one-handed, five-finger exercise on the piano. In a second experiment, we(More)
Stroke is a leading cause of adult motor disability. Despite recent progress, recovery of motor function after stroke is usually incomplete. This double blind, Sham-controlled, crossover study was designed to test the hypothesis that non-invasive stimulation of the motor cortex could improve motor function in the paretic hand of patients with chronic(More)