Learn More
Effects of hydrogen sulfide (H(2)S) on plant physiology have been previously studied, but such studies have relied on the use of NaSH as a method for supplying H(2)S to tissues. Now new compounds which give a less severe H(2)S shock and a more prolonged exposure to H(2)S have been developed. Here the effects of one such compound, GYY4137, has been(More)
Twenty years ago in a series of amazing discoveries it was found that a large family of ceramic cuprate materials exhibited superconductivity at temperatures above, and in some cases well above, that of liquid nitrogen. Imaginations were energized by the thought of applications for zero-resistance conductors cooled with an inexpensive and readily available(More)
Retaining a dissipation-free state while carrying large electrical currents is a challenge that needs to be solved to enable commercial applications of high-temperature superconductivity. Here, we show that the controlled combination of two effective pinning centres (randomly distributed nanoparticles and self-assembled columnar defects) is possible and(More)
There are numerous potential applications for superconducting tapes based on YBa(2)Cu(3)O(7-x) (YBCO) films coated onto metallic substrates. A long-established goal of more than 15 years has been to understand the magnetic-flux pinning mechanisms that allow films to maintain high current densities out to high magnetic fields. In fact, films carry one to two(More)
The formation of carbon nanotube and superconductor composites makes it possible to produce new and/or improved functionalities that the individual material does not possess. Here we show that coating carbon nanotube forests with superconducting niobium carbide (NbC) does not destroy the microstructure of the nanotubes. NbC also shows much improved(More)
The synthesis of pure δ-MoN with desired superconducting properties usually requires extreme conditions, such as high temperature and high pressure, which hinders its fundamental studies and applications. Herein, by using a chemical solution method, epitaxial δ-MoN thin films have been grown on c-cut Al(2)O(3) substrates at a temperature lower than 900 °C(More)
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has(More)
We show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase(More)