Learn More
It is well established that attention modulates visual processing in extrastriate cortex. However, the underlying neural mechanisms are unknown. A consistent observation is that attention has its greatest impact on neuronal responses when multiple stimuli appear together within a cell's receptive field. One way to explain this is to assume that multiple(More)
Many neurons in extrastriate visual cortex have large receptive fields, and this may lead to significant computational problems whenever multiple stimuli fall within a single field. Previous studies have suggested that when multiple stimuli fall within a cell's receptive field, they compete for the cell's response in a manner that can be biased in favor of(More)
We often search for a face in a crowd or for a particular object in a cluttered environment. In this type of visual search, memory interacts with attention: the mediating neural mechanisms should include a stored representation of the object and a means for selecting that object from among others in the scene. Here we test whether neurons in inferior(More)
Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 80: 2918-2940, 1998. A typical scene will contain many different objects, few of which are relevant to behavior at any given moment. Thus attentional mechanisms are needed to select relevant objects for visual processing and control over behavior. We(More)
Efficient goal-directed behavior in a crowded world is crucially mediated by visual selective attention (VSA), which regulates deployment of cognitive resources toward selected, behaviorally relevant visual objects. Acting as a filter on perceptual representations, VSA allows preferential processing of relevant objects and concurrently inhibits traces of(More)
Outcomes of actions, in the form of rewards and punishments, are known to shape behavior. For example, an action followed by reward will be more readily elicited on subsequent encounters with the same stimuli and context -- a phenomenon known as the law of effect. These consequences of rewards (and punishments) are important because they reinforce adaptive(More)
In a typical scene with many different objects, attentional mechanisms are needed to select relevant objects for visual processing and control over behavior. To test the role of area V4 in the selection of objects based on non-spatial features, we recorded from V4 neurons in the monkey, using a visual search paradigm. A cue stimulus was presented at the(More)
Neural processing at most stages of the primate visual system is modulated by selective attention, such that behaviorally relevant information is emphasized at the expenses of irrelevant, potentially distracting information. The form of attention best understood at the cellular level is when stimuli at a given location in the visual field must be selected(More)
According to some models of visual selective attention, objects in a scene activate corresponding neural representations, which compete for perceptual awareness and motor behavior. During a visual search for a target object, top-down control exerted by working memory representations of the target's defining properties resolves competition in favor of the(More)
Reward-related mesolimbic dopamine is thought to play an important role in guiding animal behaviour, biasing approach towards potentially beneficial environmental stimuli and away from objects unlikely to garner positive outcome. This is considered to result in part from an impact on perceptual and attentional processes: dopamine initiates a series of(More)