Leonard Stoica

Learn More
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy(More)
This paper presents some functional differences as well as similarities observed when comparing the newly discovered cellobiose dehydrogenase (CDH) from Trametes villosa (T.v.) with the well-characterized one from Phanerochaete chrysosporium (P.c.). The enzymes were physically adsorbed on spectrographic graphite electrodes placed in an amperometric flow(More)
A cellobiose dehydrogenase (CDH)-modified graphite electrode was designed for amperometric detection of catecholamines in the flow injection mode, by their recycling between the graphite electrode (+300 mV vs Ag|AgCl) and the reduced FAD cofactor of adsorbed CDH, resulting in an amplified response signal. The high efficiency of the enzyme-catecholamine(More)
Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden Group of Bioinformatics, Novosibirsk IT Center, Voskhod 26a, Novosibirsk 630102, Russia Laboratory of Chemical Enzymology, A.N. Bakh Institute of Biochemistry, The Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia Biomedical Laboratory Science,(More)
The present paper describes the principle and characteristics of a biosensor for lactose based on a third-generation design involving cellobiose dehydrogenase. As resulted from a previous comparative study (submitted manuscript), the novelty of this lactose biosensor is based on highly efficient direct electron transfer between two newly discovered(More)
Following previous electrochemical investigations of cellobiose dehydrogenase (CDH), the present investigation reports on the initial screening of the electrochemistry of three new CDHs, two from the white rot basidiomycetes Trametes villosa and Phanerochaete sordida and one from the soft rot ascomycete Myriococcum thermophilum, for their ability to(More)
Scanning electrochemical microscopy (SECM) is discussed as a versatile tool to provide localized (electro)chemical information in the context of biosensor research. Advantages of localized electrochemical measurements will be discussed and a brief introduction to SECM and its operation modes will be given. Experimental challenges of the different detection(More)
Carbon nanotubes covalently modified with anthraquinone were used as an electrode for the immobilization of Trametes hirsuta laccase. The adsorbed laccase is capable of oxygen reduction at a mass transport controlled rate (up to 3.5 mA cm(-2)) in the absence of a soluble mediator. The storage and operational stability of the electrode are excellent.
PtAg bimetallic nanoparticles for oxygen reduction reaction (ORR) in alkaline media were prepared by pulse electrodeposition (PED). During PED the reduction of Ag(+) ions predominates, thus an increased Ag content in the co-deposit is accomplished. The mechanism for this anomalous co-deposition was elucidated by potential pulse experiments, which revealed(More)