Learn More
An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented(More)
Recently Rothemund and Winfree [6] have considered the program size complexity of constructing squares by self-assembly. Here, we consider the time complexity of such constructions using a natural generalization of the Tile Assembly Model defined in [6]. In the generalized model, the Rothemund-Winfree construction of <italic>n \times n</italic> squares(More)
We introduce a new model of molecular computation that we call the sticker model. Like many previous proposals it makes use of DNA strands as the physical substrate in which information is represented and of separation by hybridization as a central mechanism. However, unlike previous models, the stickers model has a random access memory that requires no(More)
Self-assembly is the ubiquitous process by which simple objects autonomously assemble into intricate complexes. It has been suggested that intricate self-assembly processes will ultimately be used in circuit fabrication, nano-robotics, DNA computation, and amorphous computing. In this paper, we study two combinatorial optimization problems related to(More)
A 20-variable instance of the NP-complete three-satisfiability (3-SAT) problem was solved on a simple DNA computer. The unique answer was found after an exhaustive search of more than 1 million (2(20)) possibilities. This computational problem may be the largest yet solved by nonelectronic means. Problems of this size appear to be beyond the normal range of(More)