Learn More
[1] A size-segregated multicomponent aerosol algorithm, the Canadian Aerosol Module (CAM), was developed for use with climate and air quality models. It includes major aerosol processes in the atmosphere: generation, hygroscopic growth, coagulation, nucleation, condensation, dry deposition/sedimentation, below-cloud scavenging, aerosol activation, a cloud(More)
Potentially toxic organic compounds, acids, metals and radionuclides in the northern polar region are a matter of concern as it becomes evident that long-range transport of pollution on hemispheric to global scales is damaging this part of the world. In this review and assessment of sources, occurrence, history and pathways of these substances in the north,(More)
The Global Atmospheric Passive Sampling (GAPS) study aims to demonstrate the feasibility of using passive samplers to assess the spatial distribution of persistent organic pollutants on a worldwide basis. The GAPS network includes more than 40 sites on 7 continents, mainly in background locations, with some representation of urban and agricultural areas.(More)
The Northern Contaminants Program (NCP) baseline monitoring project was established in 1992 to monitor for persistent organic pollutants (POPs) in Arctic air. Under this project, weekly samples of air were collected at four Canadian and two Russian arctic sites, namely Alert, Nunavut; Tagish, Yukon; Little Fox Lake, Yukon; Kinngait, Nunavut; Dunai Island,(More)
Oxidation products of biogenic volatile organic compounds (BVOCs) (isoprene, monoterpenes, and sesquiterpene) were investigated in the Canadian High Arctic aerosols using gas chromatography-mass spectrometry. Twelve specific secondary organic aerosol (SOA) tracers and two hydroxyacids (glycolic and salicylic acids) were determined. The total concentrations(More)
Total suspended particles collected at Alert in the Canadian high Arctic (February-June) were analyzed for solvent extractable organic compounds using gas chromatography-mass spectrometry to better understand the sources and source apportionment of aerosol pollution that can affect the Arctic climate. More than 100 organic species were detected in the(More)
Weekly high-volume air samples were collected between 2000 and 2003 at six Arctic sites, i.e., Alert, Kinngait, and Little Fox Lake (LFL) in Canada, Point Barrow in Alaska, Valkarkai in Russia, and Zeppelin in Norway. Hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were quantified in all samples. Comparison showed that alpha-HCH and HCB were(More)
Recent studies of contaminants under the Canadian Northern Contaminants Program (NCP) have substantially enhanced our understanding of the pathways by which contaminants enter Canada's Arctic and move through terrestrial and marine ecosystems there. Building on a previous review (Barrie et al., Arctic contaminants: sources, occurrence and pathways. Sci(More)
Methyl chloride (CH3Cl), the most abundant halocarbon in the atmosphere, has received much attention as a natural source of chlorine atoms in the stratosphere. The annual global flux of CH3Cl has been estimated to be around 3.5 Tg on the grounds that this must balance the loss through reaction with OH radicals (which gives a lifetime for atmospheric CH3Cl(More)