Learn More
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and(More)
Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential(More)
The duration of intracellular signalling is associated with distinct biological responses, but how cells interpret differences in signal duration are unknown. We show that the immediate early gene product c-Fos functions as a sensor for ERK1 (extracellular-signal-regulated kinase 1) and ERK2 signal duration. When ERK activation is transient, its activity(More)
The strength and duration of mitogen-activated protein kinase (MAPK) signaling have been shown to regulate cell fate in different cell types. In this study, a general mechanism is described that explains how subtle differences in signaling kinetics are translated into a specific biological outcome. In fibroblasts, the expression of immediate early gene(More)
Inhibitors of the oncogenic Ras-MAPK pathway have been intensely pursued as therapeutics. Targeting this pathway, however, presents challenges due to the essential role of MAPK in homeostatic functions. The phosphorylation and activation of MAPK substrates is regulated by protein-protein interactions with MAPK docking sites. Active ERK1/2 (extracellular(More)
The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such(More)
The accumulation of aggregated mutant huntingtin (mHtt) inclusion bodies is involved in Huntigton's disease (HD) progression. Medium sized-spiny neurons (MSNs) in the corpus striatum are highly vulnerable to mHtt aggregate accumulation and degeneration, but the mechanisms and pathways involved remain elusive. Here we have developed a new model to study MSNs(More)
Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric(More)
The mammalian target of rapamycin (mTOR) is regulated by oncogenic growth factor signals and plays a pivotal role in controlling cellular metabolism, growth and survival. Everolimus (RAD001) is an allosteric mTOR inhibitor that has shown marked efficacy in certain cancers but is unable to completely inhibit mTOR activity. ATP-competitive mTOR inhibitors(More)
IMPORTANCE Focal cortical dysplasia (FCD), hemimegalencephaly, and megalencephaly constitute a spectrum of malformations of cortical development with shared neuropathologic features. These disorders are associated with significant childhood morbidity and mortality. OBJECTIVE To identify the underlying molecular cause of FCD, hemimegalencephaly, and(More)