Leon J. de Windt

Learn More
The differentiation and maturation of skeletal muscle cells into functional fibers is coordinated largely by inductive signals which act through discrete intracellular signal transduction pathways. Recently, the calcium-activated phosphatase calcineurin (PP2B) and the family of transcription factors known as NFAT have been implicated in the regulation of(More)
RATIONALE Aberrant expression profiles of circulating microRNAs (miRNAs) have been described in various diseases and provide high sensitivity and specificity. We explored circulating miRNAs as potential biomarkers in patients with heart failure (HF). OBJECTIVE The goal of this study was to determine whether miRNAs allow to distinguish clinical HF not only(More)
Cardiac hypertrophy is a major predictor of future morbidity and mortality. Recent investigation has centered around identifying the molecular signaling pathways that regulate cardiac myocyte reactivity with the goal of modulating pathologic hypertrophic programs. One potential regulator of cardiomyocyte hypertrophy is the calcium-sensitive phosphatase(More)
Human heart failure is preceded by a process termed cardiac remodeling in which heart chambers progressively enlarge and contractile function deteriorates. Programmed cell death (apoptosis) of cardiac muscle cells has been identified as an essential process in the progression to heart failure. The execution of the apoptotic program entails complex(More)
BACKGROUND Dicer, an RNAse III endonuclease critical for processing of pre-microRNAs (miRNAs) into mature 22-nucleotide miRNAs, has proven a useful target to dissect the significance of miRNAs biogenesis in mammalian biology. METHODS AND RESULTS To circumvent the embryonic lethality associated with germline null mutations for Dicer, we triggered(More)
Abnormalities in intracellular calcium release and reuptake are responsible for decreased contractility in heart failure (HF). We have previously shown that cardiac ryanodine receptors (RyRs) are protein kinase A-hyperphosphorylated and depleted of the regulatory subunit calstabin-2 in HF. Moreover, similar alterations in skeletal muscle RyR have been(More)
Lung ischemia-reperfusion injury remains one of the major complications after cardiac bypass surgery and lung transplantation. Due to its dual blood supply system and the availability of oxygen from alveolar ventilation, the pathogenetic mechanisms of ischemia-reperfusion injury in the lungs are more complicated than in other organs, where loss of blood(More)
The calcium-activated phosphatase calcineurin is regulated by a binding cofactor known as modulatory calcineurin-interacting protein (MCIP) in yeast up through mammals. The physiologic function of MCIP remains an area of ongoing investigation, because both positive and negative calcineurin regulatory effects have been reported. Here we disrupted the mcip1(More)
In the past 2 years, an emerging body of research has focused on a novel transcriptional pathway involved in the cardiac hypertrophic response. Ever since its introduction, the significance of the calcineurin-NFAT module has been subject of controversy. The aim of this review is to provide both an update on the current status of knowledge and discuss the(More)
We analyzed the effect of conditional, alphaMHC-dependent genetic beta-catenin depletion and stabilization on cardiac remodeling following experimental infarct. beta-Catenin depletion significantly improved 4-week survival and left ventricular (LV) function (fractional shortening: CT(Deltaex3-6): 24 +/- 1.9%; beta-cat(Deltaex3-6): 30.2 +/- 1.6%, P < 0.001).(More)